
Development of Generalized Additive Models (GAMs) in EnviEFH

1. Introduction

The  US Congress defined Essential  Fish  Habitats (EFH)  as  ‘those  waters  and 
substrate necessary to fish for spawning, breeding, feeding, or growth to maturity’, a 
definition that  includes the physical,  chemical  and biological  properties  of marine 
areas  and  the  associated  sediment  and  biological  assemblages  that  sustain  fish 
populations throughout their full life cycle (DOC, 1997). 

Generalized Additive Models (GAMs) are a powerful tool for modelling fisheries 
data with other data that characterise species EFH areas. GAMs (Hastie et al., 2001) 
are straightforward extensions of additive modelling with differences on (i) the way 
the response variable is linked with the explanatory variables, and (ii) the distribution 
function of the data (Zuur et al., In press).

The general GAM formula is:

where g is the differentiable and monotonic link function, µi = E(Yi) is the

expectation  of  the  response, is a function called additive predictor 

where  fj  is a smooth function (such as a spline or a loess smoother). The degree of 
smoothness  achieved is  balanced against  the deviance by a tuning constant,  often 
chosen  by  cross-validation,  so  that  estimation  is  by  the  method  of  maximum 
'penalized' likelihood  rather  than  of  maximum  likelihood.  This  gives  GAMs  a 
partially non-parametric aspect (Maunder and Punt, 2004).

Here, the GAM development process in EnviEFH is explained on step-by-step basis.

2. Data selection

A GAM model for EFH is generally described as: 
Response variable = s(explanatory var.1) + s(explanatory var.2) … + s(explanatory 
var.i), where s is a smoother.

Different types of fisheries data can be used as response variables (e.g. biomass 
index, sonar data etc). The selection of the proper explanatory data based on those 
parameters that describe more efficient an EFH, according to information on species 
life  history.  As  explanatory  data,  environmental  parameters  are  used  includin 
environmental satellite and model data, such as sea surface temperature, chlorophyll-a 
concentration, salinity, altimetry, photosynthetically active radiation, substrate types, 
bathymetry, etc.



3. Exploration

The exploration process is very important because the next step of the analysis 
require the data to comply with several assumptions before any valid conclusions can 
be made  (Zuur  et al., In press). Exploration routines that  provide a clear graphical 
idea of each dataset are described below (Fig. 1):

Boxplots is  a  tool  for  identifying  outliers.  A boxplot  visualises  the  mean and 
spread for a univariate variable. Normally, the midpoint of a boxplot is the median, 
but it can also be the mean. The 25% and 75% quartiles define the hinges and the 
difference between the hinges is called the spread. Lines are drawn from each hinge to 
1.5 times the spread or to the most extreme value of the spread, whichever is the 
smaller. Any point outside these values is normally outlier. 

Dotplots or Cleveland dotplots (Cleveland, 1985) are useful to identify outliers 
and homogeneity. Homogeneity means that the variance of the data does not change 
along the gradient.    

QQ-plots or Quantile-Quantile plots are graphical tools used to determine whether 
the data follow a particular distribution. 

Coplots are conditional scatterplots that show relationship between x and y, for 
different  values of a  third variable  z.  Coplots are useful  for detecting interactions 
between the explanatory variables.

Pairplots are multiple pair-wise scatterplots in one graph and can be used to detect 
relationships between variables and to detect collinearity. 

Fig.  1:  From left  to right:  boxplot,  dotplot,  QQ-plot,  coplot  and pairplot  data  exploration 
routines.

The spread of the variables and the outliers are factors that can affect a GAM 
model. In some cases, data transformation is required because it provides a better data 
fit  in  the  model.  Both  response  and  explanatory  variables  are  transformed,  and 



different types of transformations are applied to different variables within the same 
dataset. 
Inclusion  of  explanatory  variables  that  are  themselves  correlated,  the  so-called 
problem  of  ‘collinearity’  is  avoided.  This  can  make  the  model  fitting  process 
numerically unstable or lead to problems similar to those of over-fitting (Maunder and 
Punt, 2004). 

4. Create a model

The  next  step  is  the  composition  of  a  primary  submodel.  This  contains  the 
response variable, the explanatory un-correlated variables, the proper distribution and 
a  link factor.  Spline is  used as smoother  in  EFH.  In  the first  submodel  the same 
degrees  of  freedom are  used between  all  the  explanatory  factors.  For  count  data, 
Poisson distribution with log link is suggested. If the data are presence-absence, the 
binomial distribution with logit link should be used. Table 1 shows distributions and 
related links for some commonly used models.

Distribution link
Normal Identity
Binomial Logit
Gamma Reciprocal
Gamma Log
Poisson Log
Inverse Gaussian μ-2

Table 1:  Distributions and related links for commonly used models (Hastie and Tibshirani, 
1990).

The first submodel is a ‘control’ model that provides the ‘best’ fitted model through a 
selection process.

5. Model Selection

In a model’s numerical output different factors provide several information about 
it (Fig. 2). P-values for smoothing terms show the significance of the terms in the 
model. Different nested models are possible to be compared with ANOVA test. A non 
significant variable can take part in a model. An alternative way to compare different 
models  (not  necessarily  nested)  is  the  Akaike information criterion (AIC, Akaike, 
1973; Burnham and Anderson, 2002). Lower AIC characterize a better fitted model. 
Another  value  that  provides  crucial  information  about  the  model  is  the  deviance 
explained. At last, over-dispersion (not over 1) must be considered and sometimes, it 
must be corrected by using a quasi-distribution.



                 Df Npar Df Npar Chisq    P(Chi)
(Intercept)       1                             
s(ALT, 5)         1       4    15.0322    0.0046
s(PAR, 5)         1       4    12.5302    0.0138
s(DEP, 3)         1       2    31.0024 1.851e-07

Dispersion parameter                      =  1 
Deviance                                  =  504.93 
n           (null degrees of freedom)     =  718 
df.residual (residual degrees of freedom) =  701 
df          (n-df.residual)               =  17 

Overdispersion (Deviance/df.residual )    =  0.72 

AIC according to formula: -2log(Likelihood) + 2*df   = 540.93 

Fig. 2: A GAM numerical output.

After the selection of the significant smoothing terms, we have to choose the best 
combination of the degrees of freedom for the explanatory variables. Step-wise search 
is a way that gives the ‘best’ model. Any final model must be validated. We have to 
verify  the  assumptions  of  homogeneity  and  normality  and  check  for  potential 
influential observations. If the fitted values against the residuals (Fig. 3) show a clear 
spatial pattern then the model is not valid. In this case, another model selection is 
required, with the use of different terms and perhaps transformations of the initial 
data.   

Fig. 3: Fitted values against the residuals.

6. Ranges

The partial plots (Fig. 4) for the explanatory variables are the model output that 
provides environmental ranges for EFH mapping. We get the range, from each plot, 
that has a positive effect on the fitted values (e.g. range of environmental parameter 
that is over the zero axis).



Fig. 4: Partial plots of two explanatory variables.

7. EFH maps 

By applying those ranges on GIS grids,  we map areas where these ranges are 
simultaneously met and imply potential essential fish habitats (Fig. 5). Environmental 
ranges extracted from a specific surveyed area (e.g.  North Aegean Sea in Eastern 
Mediterranean) is applied to satellite data that cover the whole Mediterranean basin, 
thus providing EFH maps for the whole  Mediterranean Sea.

Fig. 5: EFH map in Mediterranean Sea.
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