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Abstract Accurate prediction of species distribu-

tions based on sampling and environmental data is

essential for further scientific analysis, such as stock

assessment, detection of abundance fluctuation due to

climate change or overexploitation, and to underpin

management and legislation processes. The evolution

of computer science and statistics has allowed the

development of sophisticated and well-established

modelling techniques as well as a variety of promising

innovative approaches for modelling species distribu-

tion. The appropriate selection of modelling approach

is crucial to the quality of predictions about species

distribution. In this study, modelling techniques based

on different approaches are compared and evaluated in

relation to their predictive performance, utilizing fish

density acoustic data. Generalized additive models and

mixed models amongst the regression models, asso-

ciative neural networks (ANNs) and artificial neural

networks ensemble amongst the artificial neural net-

works and ordinary kriging amongst the geostatistical

techniques are applied and evaluated. A verification

dataset is used for estimating the predictive perfor-

mance of these models. A combination of outputs from

the different models is applied for prediction optimi-

zation to exploit the ability of each model to explain

certain aspects of variation in species acoustic density.

Neural networks and especially ANNs appear to

provide more accurate results in fitting the training

dataset while generalized additive models appear more

flexible in predicting the verification dataset. The

efficiency of each technique in relation to certain

sampling and output strategies is also discussed.

Keywords Species distribution predictions �
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Introduction

The need for scientifically documented studies,

regarding characterization of marine ecosystems,

fluctuation in species biodiversity and abundance

and climate change effects on marine ecosystems, has

led to an increase in studies focusing on prediction of

species distribution, utilizing different approaches to
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habitat modelling and identification of habitat heter-

ogeneity (Guisan et al., 2002; Elith et al., 2006;

Valavanis et al., 2008). Such tools should be easily

accessible to managers and stakeholders involved in

decision-making and management processes while

the development of powerful analytical tools and the

evolution of geographic information system (GIS)

and remote sensing, combined with more accurate

and extensive time series data sets, constitute a

promising background for the evolution of statistical

modelling techniques and the extraction of applicable

results. Modelling approaches, such as resource

selection functions (RSF) (Valavanis et al., 2008),

quantitative structure–activity relationships (QSAR)

(Tetko et al., 1995), or geostatistics (Petitgas, 2001)

are commonly used for habitat modelling or species

distribution predictions. Extensive reviews on species

distribution models are available (Guisan & Zimmer-

mann, 2000; Redfern et al., 2006; Richards et al.,

2007; Schröder, 2008; Valavanis et al., 2008; Elith &

Leathwick, 2009). These approaches could addition-

ally be used for identifying species–environment

relationships or inter- and intra-species interactions

by utilizing species life history data.

Knowledge on species life-history data becomes

crucial during model development and model eval-

uation. There is always a trade-off among model

complexity–overfitting and simplicity–generality of

prediction efficiency. According to Guisan & Zim-

mermann (2000), nature is too complex and hetero-

geneous to be predicted accurately in every aspect of

time and space from a single, although complex,

model. Levins (1966) formulated the principle that

only two out of three preferable model properties

(generality, reality, precision) can be improved

simultaneously while the third property has to be

sacrificed. The selection of the appropriate modelling

technique should be based on the aim of each

modelling application.

Accurate estimation of species distribution, based

on sampling data, is essential for further scientific

analysis, such as stock assessment, understanding of

abundance fluctuation due to climate change or

overexploitation, and application to management

and legislation processes. This study aims to compare

several fish distribution prediction techniques based

on sampling data with respect to their statistical

performance. Advantages and disadvantages of each

modelling approach are demonstrated. Furthermore,

an attempt is made to optimize the prediction of

species distribution by combining the output of the

most informative techniques. Species distribution

predictions are applied on a training dataset, on an

independent verification dataset and on a dataset

derived from a wider area (compared to the sampling

area). The accuracy and applicability of each mod-

elling technique, the comparisons amongst them and

the biological interpretation of small pelagic species

are discussed.

Materials and methods

Study area

The study area (Fig. 1) is Thermaikos Gulf, located in

the North Aegean Sea (Northeastern Mediterranean).

Thermaikos Gulf is a semi-enclosed basin, and

relatively productive due to run-off from four major

rivers. Bottom relief is smooth due to the continuous

sediment input. Thermaikos Gulf forms a wide

continental shelf, which extends to the south into

the 1,400 m deep Sporades Basin. Water mass

circulation is predominantly cyclonic (Poulos et al.,

2000). Aegean water masses enter the gulf from

deeper layers (Kourafalou & Tsiaras, 2007) along the

eastern coast and move counter-clockwise towards

the Gulf of Thessaloniki. Riverine waters usually

move to the south along the western coast.

Acoustic data

Acoustic data have been collected during April–May

1998 in Thermaikos Gulf using a calibrated 38 kHz

SIMRAD EK 500/BI 500 system (Bodholt et al., 1989).

The echograms were scrutinized, allocating the nau-

tical area scattering coefficient (sA, m2 n mi-2, NASC,

MacLennan et al., 2002) to the target pelagic species,

such as sardine and anchovy. The integration values,

with a horizontal resolution of 1 nautical mile (nm),

have been transformed to the presence–absence data

(Fig. 1). Acoustic data have not been converted to

biomass to avoid the propagation of uncertainty in

species composition and length distribution from the

trawl sampling in the response variable (Walline,

2007). Species identification based on biological

sampling, as well as concurrent catch data, indicated

that the majority of the target species were Sardina
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pilchardus (*55%), Engraulis encrasicolus (*25%)

and Trachurus spp. (\10%). Measurements were

carried out along predetermined sampling transects,

until the isobath of 100 m, near Cape Kassandra, in an

area of about 1,600 nm2 (Tsimenides et al., 1992). The

acoustic data records allowed the extraction of a well-

structured verification data set that was used for model

evaluation. This set was constructed following an

optimal dataset partitioning process (Tetko et al., 1995)

where two adjacent points are separated and one

included in the control and the other in the learning set.

In our study, the validation dataset was formulated

using one value per four sequential sampling values

used for the training set. The distance between the

points of the verification set (5 nm) was selected based

on the fact that at this distance no spatial autocorre-

lation was detected. The specific selection of the

validation set overcomes the underestimation of pre-

dicted errors that could caused by cross-validation

approaches, especially when acoustic data are spatially

autocorrelated (Hastie et al., 2009). In addition, there is

no risk of comparing different sampling strategies,

since the verification set is a proportion of the raw data.

Semi-variograms (Matheron, 1971), calculated using

ESRI’s ArcGIS geostatistical analyst software (GAS)

and auto-correlation function estimation plots in R

statistical software (R Development Core Team,

2005), were used for identifying the spatial patterns

of the raw data, the training and the verification sets and

model residuals. Moran’s I spatial autocorrelation

statistic (Moran, 1950) was also used for estimate the

spatial pattern of the two data sets. Furthermore, the

homoscedasticity of the residuals was tested by

plotting response and explanatory variables against

the residuals. By these processes, the suitability of the

verification set was tested. In addition, the use of this

particular verification set in the validation process

overcomes several assumptions that accrued from the

use of cross-validation approaches. These differences

between the training and the selected verification set, in

addition to the fact that the verification set was not

introduced to the models, makes the verification set

spatially independent.

Environmental and geographic data

Models presented here were developed taking into

account the ability of the available environmental

parameters to explain species distribution, based on

species life history characteristics. Three data sets

were extracted for each explanatory variable. The

first (DS1) represents the sampling points across

transects, the second (DS2) represents each point of

the grid that covers the sampling area at a resolution

of 0.01 decimal degrees (*1 km) and the third (DS3)

corresponds to the verification set. These variables as

well as their sources are shown in Table 1. The

spatial resolution of the explanatory variables varied

from 0.01 to 0.04 decimal degrees according to

spatial resolution of the raw data. For modelling

purposes, all data sets were re-sampled to the highest

available resolution of 0.01 decimal degrees.

A detailed exploration process was performed on

the assembled data sets to identify potential spatial

patterns, outliers, correlations and interactions. This

process is essential for parameter selection during

model development to avoid violation of model

assumptions, apply any required variable transforma-

tions and gain a better understanding of the explan-

atory data sets. The exploration process included:

(a) pair-plots, to identify collinearity, which could

lead to biased parameter selection during model

development (Zuur et al., 2007), (b) dot-plots and

box-plots, for identification of extreme values and

outliers, (c) Quantile–Quantile plots (Q–Q plots)

Fig. 1 Study area and sampling transects
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and histograms, for an overview of data distribution

and (d) conditional box-plots, for displaying potential

relationships and interactions (Zuur et al., 2010).

Finally, nine variables were selected for model

development, according to data exploration results,

as descriptors of species distribution. These are sea

surface chlorophyll-a concentration (CHL), sea sur-

face temperature (SST), sea level anomaly (SLA),

bathymetry (DEP), photosynthetically available radi-

ation (PAR), distance-to-coast (DCoast), sea surface

temperature slope (SSTsl), depth slope (DEPsl), and

day-dark-night-dawn categorical factor (DDND)

which is used for explaining the variance of the data

that corresponds to behavioural variation of small

pelagic species between day and night (Giannoulaki

et al., 1999). Dark and dawn represent the times of

onset of migration. During the night, small pelagic

fish are more scattered and close to the surface while

during the day, they form schools in deeper layers.

SSTsl and DEPsl were generated by the SST and

Table 1 Remote sensed data, metadata and their sources

Data variable Abbreviation Data type/sensor Archive source

Acoustic data sA Total acoustic integration (area

backscattering coefficient sA per

ESDU = 1 nm)

SIMRAD EK500/BI500

system on April/May

1998 in Thermaikos Gulf

Sea surface temperature SST Grid/Aqua MODIS German Aerospace Agency

(DLR)

Chlorophyll-

a concentration

CHL Grid/Aqua MODIS Distributed Active Archive

Center (NASA)

Photosynthetically

available radiation

PAR Grid/SeaWiFS Distributed Active Archive

Center (NASA)

Sea level anomaly SLA Grid/Merged Jason-1, Envisat,

ERS-2, GFO, T/P

AVISO

Precipitation PRE Grid Mediterranean Oceanic

Database (MODB)

Sea surface salinity SSS Grid/CARTON-GIESE SODA and

CMA BCC GODAS models

Mercator operational

oceanography

Bathymetry DEP Grid/Processed ERS-1, Geostat

and historical depth soundings

Laboratory for Satellite

Altimetry (NOAA)

Wind stress and direction WS & WD Grid & cover Mercator operational

oceanography

Coastline Coast Cover/Digitisation of nautical

charts and aerial photography

Hellenic Ministry of

Environment

Distance to coast DCoast Grid and cover Extracted from coastline

Depth slope DEPsl Grid Extracted from bathymetry

grid

Temperature slope (thermal

fronts)

SSTsl Grid Extracted from SST grid

Marine productivity

hotspots

MPH Grid According to Valavanis

et al. (2004)

Mesoscale thermal fronts MTF Cover According to Valavanis

et al. (2005)

Longitude and latitude of

stations

LON, LAT Cover in decimal degrees and

metres

SIMRAD EK500/BI500

system on April/May

1998 in Thermaikos Gulf

Current speed and direction CURSP & CURDR Grid & cover/NEMO

(OPA9 ? LIM)

Mercator operational

oceanography

Day-dark-night-dawn

categorical factor

DDND Cover and grid Based on sampling date and

hour

Date DT Cover Based on sampling date
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DEP grids, respectively, and corresponded to the

maximum rate of change in value from each grid-cell

to its neighbours. Variables that were excluded after

the exploration process (i.e. not used in model

development) included date of sampling, precipita-

tion, sea surface salinity, currents speed and direc-

tion, wind stress and direction, marine productivity

hotspots (Valavanis et al., 2004), mesoscale thermal

fronts and hour when each point was sampled. Most

of these variables were excluded because they were

highly correlated with variables that were actually

used in the modelling process. The remotely sensed

data were used in the finest temporal resolution

available to describe the real-time environmental

conditions during sampling. GIS routines (ESRI

ArcInfo, version 9.1) were utilized for the conversion

of satellite images into grids (Valavanis, 2002) and

for the extraction of the environmental values at each

sampling point.

Regression models

Regression-based modelling techniques are widely

used for predicting species distribution. The most

commonly used are generalized additive models

(GAMs), generalized linear models (GLM), classifi-

cation and regression trees (CART) and multivariate

adaptive regression splines (MARS). An extensive

description of these particular methods can be found

in Elith et al. (2006) and Valavanis et al. (2008). In

this study, GAMs and generalized additive mixed

models (GAMMs) were selected amongst the regres-

sion models for species distribution predictions and

method comparison purposes, based on the fact that

GAMs are widely applied in fisheries science (e.g.

Zuur et al., 2007; Palialexis et al., 2009), and they are

the most common and well-developed tools for

habitat modelling (Valavanis et al., 2008). GAMs

are generalized models, involving a sum of smooth

functions of covariates (Hastie & Tibshirani, 1990;

Wood, 2006). The main advantage of GAMs over

traditional regression methods is their ability to

model non-linearity using non-parametric smoothers

(Hastie & Tibshirani, 1990; Wood, 2006). In addi-

tion, according to Moisen & Frescino (2002) and

Elith et al. (2006), GAMs perform marginally better

than other regression techniques (CART and GLM).

They are able to identify species–environment rela-

tionships and interactions and to provide biologically

interpretable relationships between the response and

explanatory variables. The advantage of GAMMs

compared to GAMs is that they can deal with spatial

autocorrelation, which could lead to biased models

and predictions.

The total acoustic integration, natural log-trans-

formed, was used as a response variable. The

appropriate transformation method was selected by

using Q–Q plots (Cleveland, 1994). Transformation

permitted a Gaussian distribution to be assumed for

the response variable. The identity link function was

used. Depending on the corresponding Q–Q plots,

some of the explanatory variables were transformed.

The selection of GAM smoothing predictors was

based on the method proposed by Wood & Augustin

(2002), using the ‘mgcv’ library in R statistical

software (R Development Core Team, 2005). The

degree of smoothing was selected based on the

observed data and the generalized cross validation

method (Wood, 2006). The best-fitting model was

selected by using Akaike’s Information Criterion

(AIC) (Akaike, 1974) and a stepwise forward selec-

tion was applied to restrict collinearity amongst the

explanatory variables. The GAMMs were developed

based on the final GAM model, assuming that a

specific correlation structure exists amongst all points

of the study area. This structure was modelled using

the Gaussian distribution and Gaussian spatial corre-

lation. The GAM and GAMM that better fitted the

training dataset were finally selected to predict values

in the DS1, DS2 and DS3 data sets.

Associative neural networks (ANNs)

ANNs combine the complexity of some of the

statistical techniques with the machine learning

objective at a more ‘unconscious’ level, non-trans-

parent to the user (Michie & Spiegelhalter, 1994).

According to Haykin (1994), a neural network is a

massively parallel distributed processor that has a

natural propensity for storing experiential knowledge

and making it available for use. It resembles the brain

in two respects: Knowledge is acquired by the

network through a learning process and, then, inter-

neuron connection strengths known as synaptic

weights are used for storing the stored knowledge.

ANNs comprise algorithms for mapping the input

vector (predictors) to an output vector (responses)

through processing elements called ‘neurons’ via a
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training process. The most common type of ANN is a

three-layer back-propagation network, which consists

of three basic groups of neurons (Ripley, 1996):

(a) the input neurons collect the external information

and send it to the hidden neurons in the middle layer;

(b) the hidden neurons accumulate the previous

signals, adjusting each input by certain weights and

applying certain threshold functions; and (c) the

output neurons accumulate in a second step the input

from the hidden neurons, applying again a set of

weighting parameters and threshold functions.

The ASNN is a method with improved predictive

abilities including combination of feed-forward neu-

ral networks and a k-nearest neighbour technique,

which is a classification method based on distances

amongst input samples in space. ASNNs were

initially applied in chemistry (Tetko et al., 1995)

providing more accurate predictions than artificial

neural network ensembles (ANNEs). More detailed

information on ASNN development can be found in

Tetko (2002a, b). Since this is the first application of

ASNN in marine science, both ANNE and ASNN

were developed to compare ASNN performance to

traditional ANNE and to other modelling approaches.

In this study, an ANNE, which is an averaging

neural network prediction process over several inde-

pendent networks, has been developed using one

hidden layer with three neurons. The ASNN model

was developed on the ANNE by including the

number of the nearest neighbour, k, and parameter

r for the Parzen-window regression, which is a non-

parametric way of estimating the probability density

function of a random variable. These factors repre-

sent smoothing parameters of ASNN to minimize the

ASNN error for the training set (Tetko et al., 1995).

The ANNE and ASNN models were selected

based on selection processes that include the algo-

rithm, the number of neurons and hidden layers, and

the iterations and number of ensembles. The early

stopping over ensemble (ESE) method was used for

training the neural networks (Bishop, 1995; Tetko &

Tanchuk, 2002). In ESE, initial training sets were

randomly constructed with equal size learning and

validation sets for each neural network in the

ensemble. Thus, each neural network had its own

learning and validation sets. The learning set was

used for adjusting neural network weights. The

training was stopped when a minimum error for the

validation set was calculated (‘early stopping’ point).

Following ensemble learning, a simple average of all

networks was used for predicting the test patterns.

Networks ensembles presenting the minor root mean

squared error (RMSE) and mean absolute error

(MAE) were finally selected (Tetko et al., 2008).

These were then processed by using the second-order

Levenberg–Marquardt optimization algorithm, i.e.

both first- and second-order derivatives of the error

function are required for the weight optimization. The

Levenberg–Marquardt algorithm usually does not fall

into local minima and provides the smallest errors for

a fixed number of hidden neurons (Shepherd, 1997;

Tetko et al., 2008). Both ASNN and ANNE were

developed using three neurons in one hidden layer,

600 networks in each ensemble and 80 iterations in

neural network training. These setting were opti-

mized in a modelling selection process according to

the lower RMSE and MAE. ANNE and ASNN were

developed using the ASNN software VCCLAB

(Virtual Computational Chemistry Laboratory, http://

www.vcclab.org, 2005), while the final selected

model was used for predicting the DS1, DS2 and DS3

data sets.

Kriging

The inverse distance weighted (IDW) and spline

methods (i.e. GAMs) are referred to as deterministic

interpolation methods because they are directly based

on the surrounding measured values or on specified

mathematical formulae that determine the smooth-

ness of the resulting surface. A second family of

interpolation methods consists of geostatistical meth-

ods, such as kriging, which are based on statistical

models that include autocorrelation (the statistical

relationships amongst the measured points). Thus

geostatistical techniques have the capability of pro-

ducing a prediction surface as well as provide a

measure of the certainty or accuracy of the predic-

tions (Georgakarakos & Kitsiou, 2008). The purpose

of geostatistics (Matheron, 1971) is to model the

spatial variability of a given variable and then utilize

the model to estimate the value of the variable at

given locations, with extensive applicability to esti-

mating abundance of fish populations from scientific

surveys (Petitgas, 2001).

Kriging assumes that the distance or direction

between sample points reflects a spatial correlation

that can be used for explaining variation in the
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surface. Kriging fits a mathematical function to a

specified number of points or all points within a

specified radius to determine the output value for each

location. It is a multistep process including exploratory

statistical analysis of the data, variogram modelling,

creation of the surface, and (optionally) exploring a

variance surface. Kriging is most appropriate in the

presence of a spatially correlated distance or direc-

tional bias in the data. Ordinary kriging is the most

general and widely used amongst the kriging methods.

It assumes that the constant mean of the data is

unknown. This is a reasonable assumption unless there

is a scientific reason to reject it.

In this study, kriging results are based on geosta-

tistical analysis using ESRI’s ArcGIS GAS, which

provides an extensive set of tools for performing

different kriging methods. Kriging selects weights so

that estimations are unbiased and the estimation

variance is minimized. The best-fitted variogram

is selected after running and evaluating a large

number of models, a procedure supported by GAS

(Georgakarakos & Kitsiou, 2008).

Finally, the developed kriging models were eval-

uated by analysing the leave-one-out cross-validation

residuals and their statistics were compared and

tested in relation to modelling assumptions and

whether standard errors estimated by the model are

accurate (Isaaks & Srivastava, 1989). The compari-

son amongst the different developed models was

carried out based on the calculation of the RMSE, the

average standard error (ASE) and the coefficient of

determination (R2). An ASE close to the root-mean-

squared prediction error indicates a correctly assessed

variability in prediction. If the ASE is above/below

the root-mean-squared prediction error, the variabil-

ity of the predictions is over/under estimated.

For the purposes of this study, two ordinary

kriging models were finally selected. The first one

(DefKrig) was developed to minimize errors by using

the default settings provided by GAS. The second one

(Krig) was parameterized according to data informa-

tion, regarding trends, data transformations, near

neighbour selection and variogram optimization. The

above features were incorporated in Krig model to

optimize the prediction based on data characteristics

that derived through the exploration process. Both

models were used in the comparison process because

of their differences in explaining the training data

variation. While the first model (DefKrig) is error

minimization-oriented, the second one (Krig) inte-

grates the results of the exploration process on the

training data-set and thus could be characterized as

data-oriented.

Prediction optimization

Each modelling technique explains the variance of the

observed data from a different point of view. Additive

models use a smoothing factor; ANNs are trained

based on the observed data, estimating weights and

subsequently retrained, and kriging estimates similar-

ities based on distances. A combination of these

predictions was applied by creating a GAM model,

where the response value is the observed data and

explanatory variables correspond to the predictions of

each method. This GAM was developed using forward

selection and AIC, as described above. The aim of this

process is to utilize the predictive capacity of each

technique by creating a totally new model, which

explains a larger proportion of the variance of the

sampling data. This could be characterized as a model

averaging approach. The use of a GAM exploits

predictions of different techniques in an additive way.

This model is referred to as AverMod.

Method comparison

Different aspects of models’ predictive performance

could be compared by applying a range of evaluation

statistics (Potts & Elith, 2006). Pearson’s correlation

coefficient, r, was used amongst the observed and the

predicted values as an index of relative similarity,

though a perfect correlation does not necessarily imply

exact prediction. In case of perfect correlation, all

predictions might be biased in a consistent direction.

Spearman’s rank correlation coefficient, rs, was used

for indicating the similarity between the ranks of

observed and predicted values. The use of ranks means

that, as long as the order of predictions is correct, the

value of the statistic will be high. Kendall’s rank

correlation coefficient, s, is similar to Spearman’s rs

and was used for measuring the degree of correspon-

dence between observed and predicted rankings.

The model calibration process used in this study is

analogous to Pearce & Ferrier (2000) calibration

analysis for binomial data (see also Potts & Elith,

2006) and is applied to complement the previously

mentioned correlation indices. A simple linear
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regression between observed and predicted values

(e.g. observed = m (predicted) ? b) was applied,

providing information for the bias and consistency of

the prediction. In this equation, b provides informa-

tion regarding the bias, while m provides information

about the spread of predictions compared to the

spread of the observations. A perfectly calibrated

model would be a 1:1 regression line. A parallel

regression line (m = 1, b = 0) to the 1:1 line

indicates consistent bias. When b = 0 and m = 1,

then the predicted values are both biased and

distributed in a broader or narrower range than the

observed values (Fig. 2).

Several summary statistics were estimated by

comparing the predicted to the observed values.

The objective of these statistics is to make an

informative decision on which model provides more

accurate prediction. Mean error (ME) should be close

to 0, if the predictions are unbiased, and the root-

mean-square standardized prediction error (RMSqSt)

should be close to 1, if the standard errors are

accurate. The root-mean-square prediction error

(RMSE) should be relatively low, if the predictions

are close to the measured values. Mean square error

(MSqE) and mean standardized error (MStE) should

be close to zero for accurate predictions while lower

values of MSqE are generally interpreted as best

explaining the variability in the observations. MStE is

used as an assessment of uncertainty. MAE and ASE

are quantities used for measuring how close predic-

tions are to the eventual outcomes (the lower the

ASE, the better the predictions). All the above

statistics were estimated from the prediction errors

of the final models selected.

In addition, some more summary statistics that

describe the observed and the predicted values have

been estimated, like the average value (Ave) and the

standard deviation (StDev).

Results

Species distribution predictions

Regression models

After data exploration, parameter selection and model

optimization, a final GAM model (GAM1) was

selected. Another model (GAM2), nested within

GAM1, was generated by including a temporal

categorical variable as a factor. The quality charac-

teristics of GAM2 were slightly improved compared

to GAM1 (AIC and deviance explained, Table 2),

however, GAM2 used more degrees of freedom than

GAM1, which indicates a more complex model. Both

GAM1 and GAM2 were used in the comparison

process to examine if the increase in complexity of

GAM2 improves the predictive efficiency of the

model without decreasing model generality. Together

with the final selected mixed model (GAMM1) these

two additive models, were used for predicting species

distribution and were compared based on character-

istics related to their predictive efficiency, generality

and biological interpretability (Table 2).

All models were statistically significant (Table 2).

According to the AIC criterion (the lower the better),

GAM2 is better than GAM1. In addition, the

deviance explained (not available in GAMM1) and

the adjusted R2 suggest that GAM2 explains a higher

proportion of the response variance than other

models. GAM2 performs better in describing the

relationship between acoustic data and environmental

factors.

Predictions on DS1 (Fig. 3) indicate that in certain

areas models failed to accurate predict the observed

data (in the north and northwest). This is also

apparent in predictions for the DS3 set. Other areas

were predicted relatively well in both data sets. Bar

charts indicate that GAM2 and GAMM1 perform

almost equally efficiently while there are visible

differences between these two and GAM1.

Fig. 2 Model calibration: A a perfectly calibrated model, B a

model with consistent bias, C predicted values derived from

this model are both biased and distributed in a broader or

narrower range than the observed values
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ANNs

Both ANNE and ASNN were developed using the

following explanatory variables: DDND, SLA, CHL,

PAR, SST, DEP, DCoast, DEPsl and SSTsl. The

performances of ANNE and ASNN models for the

training set are presented in Table 3.

For DS1 (Fig. 4, right), both models performed

almost equally well. Visually, they seem to provide

very accurate predictions in the whole area, while the

local variation of the sampling data is also accurately

predicted. Predictions for DS3 (Fig. 4, left) indicate

that both models describe the global trend of the data

accurately, although they under- or over-estimate

the relatively high or low observed values of the

independent set, respectively.

Kriging

Characteristics of the ordinary kriging models are

presented in Table 4. The two final selected models

differ significantly. The Krig model could be char-

acterized as a locally oriented model compared to

DefKrig, which is more globally oriented. This

observation is also depicted in Fig. 5 where predic-

tions differ significantly. The right map (Fig. 5)

confirms that the Krig model where predictions

depicted high and low observed values more accu-

rately at a local scale, compared to DefKrig, which

under-estimates the observed values. This is also

obvious in predictions on the DS3 (Fig. 5, left).

Prediction optimization

The final selected model and its characteristics are

presented in Table 5. The AverMod is a relatively

simple GAM with two explanatory variables and

relatively low degrees of freedom. However, the

deviance explained is relatively high (45.2%). GAM2

was also tested, as an explanatory variable, since it

performs statistically better than the other additive

models but it was not significant (P [ 0.05) and it

was dropped during the selection process. Figure 6

indicates that predictions derived by AverMod for the

DS1 set are relatively accurate over the whole extent

of the study area (Fig. 6, left). Predictions for the

independent set DS3 showed a tendency to under-

predict high observed values and over-predict low

values (Fig. 6, right).

Comparison

Model fit comparison

Model fit comparison was achieved by applying the

previously mentioned estimates to DS1 and compar-

ing predicted values from each model to the sampling

observed values. In order to identify the most

accurate fit to the training data, several model

Table 2 Final generalized additive models and their characteristics

Model’s code Explanatory variables Dev. exp. Res. d.f. Ra
2 AIC P-value

GAM1 s(SLA) ? s(DEP:PAR) 38.9% 23.687 0.345 570.35 �0.05

s(SLA) 5.105 �0.05

s(DEP:PAR) 18.682 �0.05

GAM2 s(SLA) ? s(DEP:PAR) ? as.factor(DDND) 47.9% 29.678 0.458 510.76 �0.05

s(SLA) 7.051 �0.05

s(DEP:PAR) 22.627 �0.05

as.factor(DDND) �0.05

GAMM1 s(SLA) ? s(DEP:PAR) ? correlation factor NA 24.597 0.444 NA �0.05

s(SLA) 5.561 �0.05

s(DEP:PAR) 19.036 �0.05

Correlation factor �0.05

Level of significance was set at 0.05. The ‘:’ sign denotes interaction

Dev. Exp. deviance explained, Res. d.f. residual d.f., Ra
2 adjusted R2, AIC Akaike Information Criterion value, P-value (chi-square)

significance values, s denotes smooth function of predictors
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comparison indices were used and presented in

Table 6.

According to Pearson’s correlation coefficient

(Table 6), the similarities amongst observed and

predicted values are better described by Krig while

ASNN and ANNE are also efficient in their predic-

tions. GAM2 performs better than the other additive

models. On the other hand, Spearman and Kendall

correlations indicate that the rank correlation between

observed and predicted values was higher for Krig

and GAM2 and lower for neural network techniques.

The model calibration process (Fig. 7; Table 6)

indicates that neural networks are almost perfectly

calibrated by minimizing the bias compared to the

other approaches and by predicting values in the same

range as observed values, as shown by the overlap

with the 1:1 regression line in Fig. 7. There are great

similarities amongst the calibrations of additive

models where they present an almost constant bias

and the ranges of their predicted values are quite

close. The regression lines of kriging models vary

greatly and seem to produce under-calibrated models.

Error analysis of predictions on DS1

Summary statistics (Ave, StDev) of the observed

(sA1-DS1) and the predicted sets as well as some

Fig. 3 A comparative representation of the observed

(SA1VER for the verification set and sA1 for the training set)

and predicted values (GAM1, GAM2, GAMM) derived from

generalized additive models and mixed model. Hued bar’s

height represents the observed and predicted fish density in

each sampling point. Left map corresponds to the verification

set (DS3-black points) and right map corresponds to the

training set (DS1-black points). The scale of the bar which is

shown in legend is 410 and 460, respectively

Table 3 Performance characteristics of ANNE and ASNN

Network, k, (r) LOO results

RSME MAE r2

ANNE 191.10 136.64 0.219

ASNN, 54, (0.01) 176.77 116.25 0.325

RMSE root mean square error, MAE mean absolute error, r2

square of correlation coefficient, LOO leave one out, k k near

neighbour, r sigma
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error indices of the predictions are presented in

Table 7. AverMod and DefKrig average predictions

are close to the average of observed values. The

ASNN and ANNE averages are also close to

sA1-DS1. The average predictions of additive models

are lower than the observed while Krig over-predicts

the observed average. The StDev of the observed

data is relatively high, which generally characterizes

the nature of acoustic data. Only the Krig model

generates a similar StDev value while other models

all predict lower StDev.

Error indices show that generally AverMod,

DefKrig, ASNN and ANNE (in decreasing order)

provide more accurate, unbiased predictions and

better explain the variability of observed values,

according to ME, MSqE, MStE, RMSqSt and RMSE.

MAE and AverMod show that GAM2 also predicts

values close to the observed. According to ME and

the sum of errors, only Krig over-estimates the

observed data while all other models either predict

accurately or under-estimate acoustic data. In con-

clusion, error analysis indicates that AverMod,

ASNN, ANNE and DefKrig fit the data on which

Fig. 4 A comparative representation of the observed

(SA1VER for the verification set and sA1 for the training set)

and predicted values (ASNN and ANNE) derived from

associative neural networks and artificial neural networks

ensemble. Hued bar’s height represents the observed and

predicted fish density in each sampling point. Left map
corresponds to the verification set (DS3-black points) and

right map corresponds to the training set (DS1-black points).

The scale of the bar which is shown in legend is 410

Table 4 Ordinary kriging models’ characteristics

Krig DefKrig

First order trend removal No trend removal

Variogram Variogram

15 number of lags 12 number of lags

Lag size 1852 m Lag size 6965.1

Nugget 1.184 Nugget 46257.18

Model spherical Model spherical

Range 26571.13 m Range 79065.67

Anisotropy No anisotropy

Minor range 5100.6

Direction 3.35�
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they are trained more accurately than did the other

models.

Comparing predictions on the verification dataset

Evaluation of model predictions on the verification

dataset was achieved by applying the above-men-

tioned estimates to DS3. The best performing models

would be characterized by generality and could

predict species distribution along extended spatial

and temporal axes more efficiently. Table 8 presents

several model comparison indices to identify the

most accurate fit to the independent verification set.

According to Pearson’s correlation coefficient

(Table 8), the similarities amongst observed and

predicted values are better described by neural

networks and especially by ASNN. GAM2 performs

better than the other additive models while Krig

performs better than DefKrig. On the other hand,

Spearman and Kendall correlation analyses indicate

that the correlation between the ranks of observed

and predicted values is higher for Krig while there is

Fig. 5 A comparative representation of the observed

(SA1VER for the verification set and sA1 for the training set)

and predicted values (DefKrig and Krig) derived from ordinary

kriging approaches. Hued bar’s height represents the observed

and predicted fish density in each sampling point. Left map

corresponds to the verification set (DS3-black points) and right
map corresponds to the training set (DS1-black points). The

scale of the bar which is shown in legend is 440 and 450,

respectively

Table 5 Characteristics of the GAM model used for the optimization of predictions

Model’s code Explanatory variables Dev. exp. Res. d.f. Ra
2 P-value

AverMod s(Krig predictions) ? s(ASNN predictions) 45.2% 11.093 0.436 �0.05

Level of significance was set at 0.05

Dev. Exp. deviance explained, Res. d.f. residual degrees of freedom, Ra
2 adjusted R2, P-value (chi-square) significance values,

s denotes smooth function of predictors
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little difference amongst the other techniques. The

results of the model calibration process (Fig. 8;

Table 8) indicate that additive model predictions are

characterized by a constant bias, although the

spread of the predicted values is similar to the

spread of the observed values. The predictions

obtained by means of neural networks for the

verification set are generally less accurate than in

training set, presenting bias and wider range of

values, compared to the observed. The predictions

derived from Krig showed a significant divergence

from the 1:1 regression line while DefKrig predicts

more accurately than Krig according to the evalu-

ation process in the DS3.

Fig. 6 A comparative representation of the observed

(SA1VER for the verification set and sA1 for the training set)

and predicted values (AverMod) derived from prediction

optimized model. Hued bar’s height represents the observed

and predicted fish density in each sampling point. Left map
corresponds to the verification set (DS3-black points) and right
map corresponds to the training set (DS1-black points). The

scale of the bar which is shown in legend is 410

Table 6 Model comparison indices used for identifying the most accurate fit on training data

GAM1 GAM2 GAMM1 DefKrig Krig ANNE ASNN AverMod

Correlation

Pearson’s r 0.38 0.49 0.45 0.50 0.59 0.57 0.56 0.67

Spearman’s rs 0.62 0.71 0.69 0.54 0.79 0.55 0.56 0.81

Kendall’s s 0.45 0.53 0.51 0.39 0.62 0.39 0.40 0.64

Calibration

Intercept, m 0.821 0.819 0.823 1.160 0.592 0.980 0.967 1.019

Slope, b 92.89 82.65 85.51 -30.22 37.07 12.31 15.42 -3.67

R2 0.145 0.224 0.206 0.250 0.351 0.327 0.316 0.453
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Error analysis of predictions on DS3

Summary statistics (Ave, StDev) for the observed

(sA-DS3) and the predicted sets as well as error

indices for the predictions are presented in Table 9.

The error analysis of the predictions on the

verification set DS3 generated different results to

those obtained from the error analysis of the predic-

tions on the training set (DS1). In this case, DefKrig

and ANNE predicted the average observed values

more accurately while ASNN and AverMod are also

similar. Again, Krig is the only model that provides

Fig. 7 Models’ calibration indicated by regression lines amongst observed (y-axis) and predicted (x-axis) values on training dataset

(DS1). The 1:1 regression line corresponds to a perfect calibrated model

Table 7 Models’ comparison error indices used for identifying the best fit on training data

DS1 sA1-DS1 GAM1 GAM2 GAMM1 DefKrig Krig ANNE ASNN AverMod

Ave 193.414 122.348 133.445 131.089 192.869 263.935 184.856 184.104 193.414

StDev 215.192 99.740 117.158 118.775 92.748 215.353 125.587 125.078 142.058

RMSE 1335.194 1126.701 1170.972 10.232 1324.978 160.789 174.904 *0.000

MSqE 1782742.121 1269454.155 1371174.907 104.696 1755565.923 25853.085 30591.264 *0.000

MAE 117.781 107.436 110.484 130.249 152.782 116.248 116.187 97.469

ASE 0.752 0.728 0.739 0.728 0.742 0.707 0.710 0.672

MStE -0.356 -0.320 -0.323 -0.003 0.363 -0.048 -0.052 *0.000

RMSqSt 6.684 6.016 6.072 0.055 6.820 0.911 0.982 *0.000

ME -71.065 -59.968 -62.325 -0.545 70.521 -8.558 -9.309 *0.000
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predictions with StDev near to that of the observed

values. Error indices show that DefKrig and ANNE

provide the most accurate and unbiased predictions

while AverMod and ASNN are also efficient. Accord-

ing to MAE, ASNN and GAM2 predict values similar

to the observed values (AverMod, as well). ME and

the sum of errors show that Krig over-estimates the

observed data. Predicted values from DefKrig and

ANNE are very similar to the observed values while all

other models are under-estimating the observed

acoustic data. The analysis of the errors derived from

the predictions on DS3 indicates that ANNE out-

performs ASNN. ANNE and DefKrig provide the most

unbiased and accurate predictions on an independent

Table 8 Models’ comparison indices used for identifying the most accurate fit on the verification dataset

GAM1 GAM2 GAMM1 DefKrig Krig ANNE ASNN AverMod

Correlation

Pearson’s r 0.48 0.58 0.56 0.53 0.58 0.67 0.73 0.67

Spearman’s rs 0.62 0.68 0.67 0.62 0.71 0.62 0.65 0.73

Kendall’s s 0.44 0.50 0.48 0.43 0.56 0.45 0.50 0.57

Calibration

Intercept, m 1.090 0.981 0.954 1.317 0.586 1.871 1.317 1.154

Slope, b 62.92 61.83 67.97 60.09 37.33 175.28 40.79 22.14

R2 0.233 0.338 0.315 0.281 0.332 0.454 0.536 0.445

Fig. 8 Models’ calibration indicated by regression lines amongst observed (y-axis) and predicted (x-axis) values on the independent

verification dataset (DS3). The 1:1 regression line corresponds to a perfect calibrated model
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dataset, even if AverMod and ASNN fit the training

data more effectively. In both cases, GAM2 performs

best amongst the additive models.

Comparing predicted grids

A global trend in acoustic density, which is described

by low values to the South–Southeast and high values

to the North–Northwest and in the centre of the study

area, is observed in Figs. 4, 5 and 6. Locally, there is

significant variation of observed values, especially in

the northeast. The predicted grids (Figs. 9, 10, 11 and

12) were generated to evaluate model predictions on

an extended spatial scale and depict species potential

distribution in a biologically and oceanographically

distinct region, such as the Thermaikos Gulf. The

crucial question is which model prediction describes

species habitats and distribution more accurately,

both globally and locally. Values in grids (Figs. 9, 10,

11 and 12) represent acoustic fish density (black: high

values, white: low values). In addition, circles

represent the sampled acoustic fish density using an

opposite colour-scale to that used for the grids (black

circles: low values, white circles: high values).

Predicted grids generated by GAMs are shown in

Fig. 9. According to model calibration, correlations,

summary statistics and error analysis, GAM2 per-

forms better than the others techniques while

GAMM1 performs better than GAM1. Figure 9

provides the possibility of a visual comparison

amongst predicted grids and observed values (dots).

The three models could be characterized by a

common pattern in predicting potential species dis-

tribution. However in GAM2 and GAMM1, there is

significant evidence of the DDND factor, which

causes sudden changes in the predicted acoustic

density. This observation reflects the effect of day-

dark-dawn-night pattern in the species distribution.

Since the environmental data were selected to

approximate the real sampling time, the predicted

grids correspond to species distribution at the

temporal scale of the sampling effort. Model gener-

ality was tested mostly in spatial mode, rather than in

temporal mode, by using DS2 and DS3. GAM1

depicts a more smooth acoustic density distribution,

which is in agreement with the observed global trend

but fails to accurately depict the local variation and

heterogeneity of the potential predicted species

habitats. There are no significant differences between

GAMM1 and GAM2 (r = 0.98).

DefKrig and Krig generated grids (Fig. 10) differ

significantly (r = 0.36), showing the different way

that these models were developed. Error analysis

provides evidence of this particular difference,

which is also noticeable in the scale of the predicted

density in each map (Fig. 10). DefKrig does not

clearly present the global trend of the acoustic

density distribution, which is more obvious in Krig.

On the other hand, Krig seems to over-fit the

training data especially in the centre of the sampling

area where the predicted high acoustic density areas

mostly overlap the observed high density sampling

points.

The generated predicted grids (Fig. 11) derived

from ASNN and ANNE are very similar (r = 0.98).

The DDND pattern is less obvious than in GAMM or

GAM2. In general, both grids provide a smooth and

un-clustered potential density distribution and they

preserve model generality, which is shown by the

efficient predictions in DS3. The expected global

Table 9 Models’ comparison error indices and summary statistics used for identifying the best fit on the verification dataset

DS3 sA1-DS3 GAM1 GAM2 GAMM1 DefKrig Krig ANNE ASNN AverMod

Ave 195.011 121.167 135.830 133.212 193.649 269.270 197.925 179.003 188.242

StDev 218.712 96.831 129.724 128.699 87.956 215.041 78.762 121.495 126.426

RMSE 696.642 558.315 583.008 12.852 700.551 27.485 151.023 63.861

MSqE 485310.678 311715.763 339898.565 165.183 490772.162 755.408 22808.006 4078.247

MAE 119.579 106.025 109.288 134.417 154.808 130.066 104.537 101.902

ASE 1.568 1.468 1.414 1.647 1.452 1.498 1.325 1.315

MStE -0.338 -0.309 -0.347 -0.006 0.396 0.015 -0.102 -0.044

RMSqSt 3.185 2.912 3.276 0.053 3.735 0.138 0.967 0.415

ME -73.844 -59.181 -61.799 -1.362 74.258 2.913 -16.008 -6.769
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trend is depicted in both grids, especially in coastal

areas, but it is not very clear in the centre of the

sampling area probably because of the smoother

gradient of predictions.

The grid derived by AverMod prediction is shown

in Fig. 12. The model calibration process, the error

analysis and the correlations provide evidence that

this model is characterized by a better predictive

Fig. 9 Predicted grids from GAMs and GAMM that represent

acoustic fish density (black high values, white low values).

Circles represent the sampled acoustic fish density sA1 in an

opposite colour-scale than grids (black circles low values,

white circles high values). White dots on black grid indicates

accurate prediction and vice versa
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Fig. 10 Predicted grids from Krig and DefKrig that represent

acoustic fish density (black high values, white low values).

Circles represent the sampled acoustic fish density sA1 in an

opposite colour-scale than grids (black circles low values,

white circles high values). White dots on black grid indicates

accurate prediction and vice versa

Fig. 11 Predicted grids from ASNN and ANNE that represent

acoustic fish density (black high values, white low values).

Circles represent the sampled acoustic fish density sA1 in an

opposite colour-scale than grids (black circles low values,

white circles high values). White dots on black grid indicates

accurate prediction and vice versa

182 Hydrobiologia (2011) 670:165–188

123



capacity than the other techniques. This grid com-

bines the generality of the ASNN with the local

nature of Krig in an additive way, which results in a

more efficient potential density distribution. The

global trend of the data is preserved while several

patches across the study area indicate heterogeneity

in species distribution.

Discussion

Regression models

The comparison of GAMs showed that GAM2

performs better than GAM1 and GAMM1 in all

aspects. During the selection process, GAM2 showed

the best quality characteristics (i.e. lowest AIC,

highest deviance explained) and this is reflected in

the predictive capacity of GAM2 for all three data

sets used for the predictions. Thus GAM2 was the

most appropriate model amongst GAMs in fitting the

data, predicting an independent dataset and predicting

a dataset that covered a larger area than the one used

for model training. GAMM1 performs almost equally

to GAM2 but the inclusion of autocorrelation did not

succeed in improving the predictive ability of the

mixed model. GAM1 was formulated to be the

simpler model to preserve generality but predictions

on the independent set did not meet the original

expectations.

Generality, reality and precision are the features

that group modelling techniques and only two out of

the three can be achieved by a model each time

(Levins, 1966). Although GAM1 is a more general

model and could be used in a wide range of spatial

and temporal predictions, GAM2 is the model that

describes the variance of the acoustic data more

accurately and precisely. On the other hand, GAMM1

is the only model that deals with spatial autocorre-

lation issues (Keitt et al., 2002), which can cause bias

when modelling acoustic data, even if it does not

perform equally to GAM2 in respect of the fitting

efficiency and predictive capacity.

In general, GAMs and GAMMs are able to

identify specific relationships between the response

and the explanatory variables. In this case, high

acoustic backscattering is related to areas with high

or low values of SLA and either a combination of low

DEP in a wide range of PAR or a combination of high

DEP and high PAR. According to SLA, which is

affected by winds and surface currents in the study

area, the above conditions are met along the west and

east coasts of the study area. These areas are

generally nutrient-rich due to upwelling and river

outflows, maintaining high concentrations of small

pelagic species. The same areas are pinpointed by the

interaction between effects of PAR and DEP. Addi-

tional areas in the open sea of the study area, where

gyres and other oceanographic features are generated,

are indicated by the latter interaction. These features

are related to the life history of small pelagic species

(Valavanis et al., 2005).

Kriging

The kriging models used in the present study were

significantly different. DefKrig is error minimizing

oriented, performing much better in the calibration

process and error analysis. The predicted grid,

though, provides evidence that it is a relatively

conservative model. On the other hand, Krig, which

Fig. 12 Predicted grid from AverMod that represents acoustic

fish density (black high values, white low values). Circles
represent the sampled acoustic fish density sA1 in an opposite

colour-scale than grids (black circles low values, white circles
high values). White dots on black grid indicates accurate

prediction and vice versa
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is the only model that preserves the variance and the

StDev of the training set in its predictions, generates a

more realistic potential distribution map, including

important distribution heterogeneity but it tends to

over-fit the training dataset.

Neural networks

ASNN and ANNE perform almost equally. However,

ASNN is slightly better in fitting the observed data

while ANNE provides better predictions in the

independent dataset. In this study, contrary to the

original expectation, ASNN’s increased predictive

ability did not overcome that of ANNE.

Model characteristics indicate that ASNN outper-

forms ANNE. A crucial feature of ASNN is the ability

to interpret ANNE results by analysing the correlations

between data cases in model space (Tetko, 2002b).

This innovative approach provides a more complicated

simulation of species–environment relationships since

it is able to model local and global trends in the data

(Tetko, 2002a). If new data become available, ASNN

further improves its predictive ability and provides a

reasonable approximation of the unknown function

without the need to retrain the neural network (Tetko,

2002a). In this study, since there is no evidence of over-

estimation or under-estimation of the training set,

ASNN could be characterized by generality while

conserving the ability to identify local variation in data.

This is a result of the combination of an artificial feed-

forward neural network, which is a memory-less

approach, and k-nearest neighbours and the Parzen-

window regression that represent the memory-based

approaches (Tetko, 2002a). The neural networks can

be considered as global models while the other two

approaches are usually regarded as local models

(Lawrence et al., 1996).

ANNs are generally characterized as a ‘black box’

approach. The output of ASNN, and the use of

approaches like evaluation strip proposed by Elith

et al. (2006), which enable the inspection of

responses and the effects on the explanatory variables

make ASNN more informative and less of a ‘black

box’ approach.

Prediction optimization

Model optimization was performed by combining the

predictions of the above techniques in an additive

way, by training a new GAM. AverMod is the best

calibrated model with increased similarities to the

observed data without over-fitting the data and with

the greatest predictive capacity. Since, each model-

ling approach aims to explain a portion of observed

data’s variation, the combination of two models could

provide a model with increased ability to explain

data’s deviance. In addition, AverMod indicates that

the optimal model provides an analogous increase in

the efficacy of predictions. The potential species

distribution on the predicted grids was justified by

other published approaches that include oceano-

graphic processes that are related to species occur-

rence and species habitat preferences derived from

their life-history characteristics.

Elith & Leathwick (2009) stated that the realized

species distribution is placed in both environmental

and geographic space. In this study the Krig model

explains the variability of the sampling data by

utilizing exclusively geographic information. On the

other hand, ASNN was developed by using mainly

environmental data. As a result, the increased accu-

racy of the AverMod could partially be explained by

the fact that it combines a ‘geographic’ model (Krig)

with an ‘environmental’ model (ASNN) to generate a

hybrid model that refers to a parameter space with

both environmental and geographic dimensions.

Small pelagic species distribution, biology

and comparison to other studies in the area

Small pelagic fish species are highly exploited

species, characterized by large fluctuations in abun-

dance and spatial distribution that mainly depend on

fluctuations in environmental factors. Oceanographic

features such as temperature fronts, eddies, rings and

upwelling areas have been related to fish biomass

concentration, at least at certain spatial scales (Laurs

et al., 1984; Fiedler & Bernard, 1987; Chen et al.,

2005). In general, warm, nutrient-depleted water has

low chlorophyll-a content and cold, nutrient-rich

water has high chlorophyll-a levels (Georgakarakos

& Kitsiou, 2008). Some species, such as anchovy and

sardine, which prefer phytoplankton-rich waters dur-

ing some periods of their life cycle may exhibit a

stronger linkage to chlorophyll-a concentrations

(Ware & Thomson, 2005) than other species at

higher trophic levels. European anchovy is also

related to the influence of river outflow as shown in
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the Bay of Biscay, the Adriatic Sea and the Bay of

Tunis (Motos et al., 1996; Agostini & Bakun, 2002),

in the Catalan Sea and the Gulf of Lions (Palomera

et al., 2007; Sabates et al., 2007).

The grids predicted for Thermaikos Gulf identify

two distinct areas where fish biomass is concentrated:

the west coastline from north to south, which is

characterized by the presence of riverine waters, and

the central study area, which is related to gyre

formation (Somarakis et al., 2002). Both areas could

be characterized as nutrient-rich.

Several modelling approaches have been used in

Thermaikos Gulf for small pelagic species. Georga-

karakos & Kitsiou (2008) applied kriging and

co-kriging methods on acoustic fish density data

and the conclusions are in agreement with the

findings of the present study, especially in the

identification of the central part of the study area

with high acoustic density. Schismenou et al. (2008)

have characterized Thermaikos Gulf as a known

fishing ground for anchovy, sardine and sardinela.

However, the output of their study was in lower

resolution and could not directly be compared to data

presented here, since there is no distinguishable

distribution fluctuation. This is the case in Tsagarakis

et al. (2008) where discriminant function analysis

(DFA) is applied on sardine. Despite the low

resolution mapping, which is not suitable for habitat

heterogeneity identification, the output of DFA is

generally in agreement with the outputs of the present

study. Giannoulaki et al. (2008) developed GAMs for

habitat identification of anchovy for a different time

frame to the one used in this study, and they resulted

to similar fish distribution trend as the one that

identified in this study by the most efficient models.

This agreement confirms the long-term persistence of

oceanographic features, such as gyres and upwelling

that favour species concentration in specific areas.

Comparison and evaluation of the modelling

techniques

One step towards improving evaluation of model

performance in predicting species distributions is to

use independent, well-structured data sets for valida-

tion (Elith et al., 2006). For presence data, the best

model evaluation is achieved by withholding data

(k-fold partitioning) for testing model predictions or

by comparing RSF predictions using models

developed for different periods and study areas

(prospective sampling) (Boyce et al., 2002). Accord-

ing to Lehmann et al. (2002), cross-validation or

bootstrapping is generally more practical because it

creates relatively independent random data subsets

and allows the use of all available data in the modelling

process. By using entirely independent data sets, there

is a risk of comparing different sampling strategies

instead of evaluating a model (Lehmann et al., 2002).

In this study, the verification set was derived from the

initial sampling strategy. On the other hand, the use of

such data as a verification set presents similarities to

cross-validation techniques. The extensive exploration

of the raw data resulted in the construction of a

verification set that is unknown to models. The

selected validation dataset contains measurements

omitted at each step h units (h equals at least 5 nm),

whilst h is chosen according to the empirical vario-

gram of both validation set and prediction residuals.

The empirical variograms revealed a low autocorrela-

tion, even at distances below the h limit. A similar

spatial structure has been encountered in previous

surveys (October 1996, May 1997) even in different

seasonal conditions (Georgakarakos & Kitsiou, 2008).

Results from a comparative study using series of

acoustic survey data from five different locations in

Europe suggested that the spatial organization of the

stock would be more dependent on environmental

parameters than on fish abundance (Petitgas, 2001).

Thus, DS3 represents an unknown set for the training

process of modelling techniques. However, from a

biological point of view it maintains the sampling

information. The predictive performance of species

potential distribution is presented for each separate

dataset.

In general, neural networks and especially ASNN

are more accurate than the other techniques in fitting

the training dataset, while GAMs and especially

GAM2 are more flexible in predicting the indepen-

dent dataset. Kriging on the other hand, is a useful

tool for species distribution predictions. However, the

approach of predicting distribution by utilizing the

spatial correlation of sampling might not be as strong

as utilizing a large number of environmental vari-

ables that are biologically related to species distribu-

tion. In any case, better quality and resolution of

sampling data would provide better results since all

the above modelling approaches are data sensitive.

Amongst biological data sets, acoustic density
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abundance represents a challenging dataset for mod-

elling studies since it is characterized by important

variation. Most modelling techniques use smoothers

for fitting the data (spline for GAMs, Parzen-window

for ASNN) and, thus, they tend to under-predict high

observed values and over-predict low values. As a

result, the global error is minimized but the accuracy

of predictions regarding local variation of acoustic

data declines. The use of high resolution informative

explanatory variables partially overcomes the above

effect and reveals a more accurate variance for

species distribution and thus the potential habitat

heterogeneity.

ASNN and ANNE are suggested as the appropriate

methods to model sampling data efficiently. Both

methods represent the original data more realistically

than the other techniques and they are able to identify

local and global variation of the data without over-

fitting the sampling/training dataset. These charac-

teristics make ASNN and ANNE optimal approaches

for presenting the realistic species distribution

derived from sampling data and thus, for manage-

ment purposes, marine protected areas designation,

and sampling strategy selection. This study also

indicates the predictive ability of GAMs, especially

when predictions are required on an expanded spatial

scale beyond the sampling area. Thus, GAMs could

be used in studies that are oriented towards identi-

fying potential species habitats at a larger spatial

scale than in high resolution habitat heterogeneity

identification. In addition, GAMs output are able to

exhibit species–environment relationships that are

easier to interpret than other techniques’ outputs.

The overall results indicate that AverMod is the

most accurate approach for predicting species distri-

bution and thus could be characterized as the most

suitable for the purposes mentioned above. The

drawback of this approach is the requirement of

developing several different models before combining

their predictions. In addition, the combination of

different model predictions should be always tested

against the initial predictions since it is not a straight-

forward process. In this study, a GAM was used for

combining different models’ predictions in an additive

way. Instead of GAMs, other techniques could also be

used, e.g. training an ASNN by using several predic-

tions as input. In any case, the optimization of species

distribution prediction by the approach proposed in

this study seems to be very promising.

Conclusions

GAMs are a very flexible approach to model fish

density acoustic data and are able to identify specific

relationships between the response and the explana-

tory variables. Kriging on the other hand, is a useful

tool for species distribution predictions. However, the

approach of predicting species distribution by utiliz-

ing the spatial correlation of sampling might not be as

strong as utilizing a large number of environmental

variables that are biologically related to species

distribution. ASNN and ANNE are suggested as the

appropriate methods to model sampling data effi-

ciently. Both methods represent the original data

more realistically than the other techniques and they

are able to identify local and global variation of the

data without over-fitting the sampling/training data-

set. The prediction optimization approach over-per-

formed the other methods, since it combines a

‘geographic’ model (kriging) with an ‘environmental’

model (ASNN) to generate a hybrid model that refers

to a parameter space with both environmental and

geographic dimensions.

References

Agostini, V. N. & A. Bakun, 2002. ‘Ocean triads’ in the

Mediterranean Sea: physical mechanisms potentially

structuring reproductive habitat suitability (with example

application to European anchovy, Engraulis encrasico-
lus). Fisheries Oceanography 11: 129–142.

Akaike, H., 1974. A new look at the statistical model identi-

fication. IEEE Transactions on Automatic Control 19:

716–723.

Bishop, M., 1995. Neural Networks for Pattern Recognition.

Oxford University Press, Oxford.

Bodholt, H., H. Nes & H. Solli, 1989. A new echo sounder

system. Proceedings of the Institute of Acoustics (UK)

11(3): 123–130.

Boyce, M. S., P. R. Vernier, S. E. Nielsen & F. K. A.

Schmiegelow, 2002. Evaluating resource selection func-

tions. Ecological Modelling 157: 281–300.

Chen, I. C., P. F. Lee & W. N. Tzeng, 2005. Distribution of

albacore (Thunnus alalunga) in the Indian Ocean and its

relation to environmental factors. Fisheries Oceanography

14: 71–80.

Cleveland, W. S., 1994. The Elements of Graphing Data.

Hobart Press, Summit. ISBN:0-9634884-1-4.

Elith, J. & J. R. Leathwick, 2009. Species distribution models:

ecological explanation and prediction across space and

time. Annual Review of Ecology, Evolution, and System-

atics 40: 677–697.

186 Hydrobiologia (2011) 670:165–188

123



Elith, J., C. H. Graham, R. P. Anderson, M. Dudik, S. Ferrier,

A. Guisan, R. J. Hijmans, F. Huettmann, J. R. Leathwick,

A. Lehmann, J. Li, L. G. Lohmann, B. A. Loiselle, G.

Manion, C. Moritz, M. Nakamura, Y. Nakazawa, J. M. C.

Overton, A. T. Peterson, S. J. Phillips, K. S. Richardson,

R. Scachetti-Pereira, R. E. Schapire, J. Soberon, S. Wil-

liams, M. S. Wisz & N. E. Zimmermann, 2006. Novel

methods improve prediction of species’ distributions from

occurrence data. Ecography 29: 129–151.

Fiedler, P. C. & H. J. Bernard, 1987. Tuna aggregation and

feeding near fronts observed in satellite imagery. Conti-

nental Shelf Research 7: 871–881.

Georgakarakos, S. & D. Kitsiou, 2008. Mapping abundance

distribution of small pelagic species applying hydro-

acoustics and co-kriging techniques. Hydrobiologia

612(1): 155–169.

Giannoulaki, M., A. Machias & N. Tsimenides, 1999. Ambient

luminance and vertical migration of the sardine Sardina
pilchardus. Marine Ecology Progress Series 178: 29–38.

Giannoulaki, M., V. D. Valavanis, A. Palialexis, K. Tsagarakis,

A. Machias, S. Somarakis & C. Papaconstantinou, 2008.

Modelling the presence of anchovy Engraulis encrasicolus
in the Aegean Sea during early summer, based on satellite

environmental data. Hydrobiologia 612(1): 225–240.

Guisan, A. & N. E. Zimmermann, 2000. Predictive habitat

distribution models in ecology. Ecological Modelling 135:

147–186.

Guisan, A., J. Edwards, C. Thomas & T. Hastie, 2002. Gen-

eralized linear and generalized additive models in studies

of species distributions: setting the scene. Ecological

Modelling 157: 89–100.

Hastie, T. & R. Tibshirani, 1990. Generalized Additive Mod-

els. Chapman & Hall, London.

Hastie, T., R. Tibshirani & J. Friedman, 2009. The Elements of

Statistical Learning: Data Mining, Inference, and Predic-

tion, 2nd ed. Springer, Berlin.

Haykin, S., 1994. Neural Networks: A Comprehensive Foun-

dation. Macmillan, New York.

Isaaks, E. H. & R. M. Srivastava, 1989. Applied Geostatistics.

Oxford University Press, New York.

Keitt, T. H., O. N. Bjornstad, P. M. Dixon & S. Citron-Pousty,

2002. Accounting for spatial pattern when modelling organ-

ism–environment interactions. Ecography 25: 616–625.

Kourafalou, V. & K. Tsiaras, 2007. A nested circulation model

for the North Aegean Sea. Ocean Science 3: 1–16.

Laurs, R. M., P. C. Fiedler & D. R. Montgomery, 1984.

Albacore tuna catch distributions relative to environ-

mental features observed from satellites. Deep-Sea

Research 31: 1085–1099.

Lawrence, S., A. C. Tsoi & A. D. Back, 1996. Function

approximation with neural networks and local methods:

bias, variance and smoothness. Australian Conference on

Neural Networks. Australian National University: 16–21.

Lehmann, A., C. Overton & J. R. Leathwick, 2002. GRASP:

generalized regression analysis and spatial prediction.

Ecological Modelling 157: 189–207.

Levins, R., 1966. The strategy of model building in population

ecology. American Scientist 54: 421–431.

MacLennan, D. N., P. G. Fernandes & J. Dalen, 2002. A

consistent approach to definitions and symbols in fisheries

acoustics. ICES Journal of Marine Science 59: 365–369.

Matheron, G., 1971. The Theory of Regionalized Variables and

its Applications. Ecole Nationale Supérieure des Mines de

Paris, Fontainebleau.

Michie, D., D. J. Spiegelhalter & C. Taylor, 1994. Machine

Learning, Neural and Statistical Classification. Prentice

Hall, Englewood Cliffs.

Moisen, G. G. & T. S. Frescino, 2002. Comparing five mod-

elling techniques for predicting forest characteristics.

Ecological Modelling 157: 209–225.

Moran, P. A. P., 1950. Notes on continuous stochastic phe-

nomena. Biometrika 37: 17–23.

Motos, L., A. Uriarte & V. Valéncia, 1996. The spawning
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