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Abstract The accurate representation of species

distribution derived from sampled data is essential for

management purposes and to underpin population

modelling. Additionally, the prediction of species

distribution for an expanded area, beyond the sam-

pling area can reduce sampling costs. Here, several

well-established and recently developed habitat mod-

elling techniques are investigated in order to identify

the most suitable approach to use with presence–

absence acoustic data. The fitting efficiency of the

modelling techniques are initially tested on the

training dataset while their predictive capacity is

evaluated using a verification set. For the comparison

among models, Receiver Operating Characteristics

(ROC), Kappa statistics, correlation and confusion

matrices are used. Boosted Regression Trees (BRT)

and Associative Neural Networks (ASNN), which are

both within the machine learning category, outper-

formed the other modelling approaches tested.

Keywords Species distribution models � Species

distribution predictions � Habitat modelling � Models

comparison � Geostatistics � Spatial autocorrelation

Introduction

Knowledge of species ecological and geographical

distribution is essential for conservation planning and

forecasting (Ferrier et al., 2002) as well as for

assessing evolutionary determinants of spatial pat-

terns of biodiversity (Graham et al., 2006). Several

techniques have been developed for the identification

of species distribution using sampling data. These

may be categorized as species distribution models

(SDM), which are statistical models that relate

surveyed data on species distribution with the asso-

ciated environmental and geographical characteristics

of the surveyed locations (Elith & Leathwick, 2009).

In the literature, SDMs are variously described as

resource selection functions (RSFs), habitat models

and ecological niche models (see Elith & Leathwick,

2009). Approaches based on SDMs have only

relatively recently been applied to marine species

and several novel modelling methods have been

proposed (Leathwick et al., 2005, 2006a; Phillips

et al., 2006; Palialexis et al., this issue). SDMs have
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been also used to study relationships between envi-

ronmental variables and species presence (Amara

et al., 2004; Giannoulaki et al., 2008; Lefkaditou

et al., 2008; Martin et al., 2008), identifying species

essential habitats (Planque et al., 2007) and forecast-

ing how species distribution may be affected by

climate changes (Siapatis et al., 2008). Easy access to

satellite data which cover extended geographical

areas is one reason for the increasingly wide use of

SDMs. Presence–absence data derived from several

sampling strategies are commonly used with SDMs.

Zaniewski et al. (2002) argued that modelling based

on presence–absence data is more likely to reflect the

present natural distribution of a species, i.e. the

realized niche, whereas presence-only methods are

more likely to predict potential distributions, more

closely resembling the fundamental niche.

The evolution of computer science and statistics is

reflected in the novel methods proposed to model

species distribution. Presence-only models [e.g. Bioc-

lim, Envelope Score, Ecological Niche Factor Analysis

(ENFA)] were initially applied to terrestrial species,

taking advantage of data from natural history museums

(Ready et al., 2010). Environmental envelope-based

models are related to niche theory, where a suitable

environmental ‘envelope’ that favours species occur-

rence is estimated. Compared to presence-only models,

presence–absence approaches to SDM perform more

efficiently in terms of prediction (Brotons et al., 2004)

since they exploit the additional information about

unsuitable environmental conditions for species occur-

rence. Regression models, such as Generalized Linear

Models (GLMs) and Generalized Additive Models

(GAMs) are widely used to model presence–absence

data (Olivier & Wotherspoon, 2005; Leathwick et al.,

2006b). Recently, several modelling techniques were

developed utilizing the evolution of methods in

computer science, like Boosted Regression Trees

(BRT; Leathwick et al., 2006a) and Associative Neural

Networks (ASNN; Tetko, 2002a, b) combining differ-

ent algorithms in order to optimize the predictive

capacity of the models. Additionally, the most widely

used models, like GAMs, have been further developed

(e.g. BRUTO, Hastie & Tibshirani, 1990) or modified

(e.g. MARS, Leathwick et al., 2006a) to meet

additional requirements identified from experience

with model building.

Presence–absence models are generally easier to

develop since the training data have a binomial

distribution while abundance models require more

complicated distributions (e.g. Poisson, Gaussian)

and thus, several assumptions are necessary. The

validation process and error assessment for presence–

absence models is correspondingly more straightfor-

ward than is the case for abundance models. Several

methods have been developed to assess the quality of

model predictions (Fielding & Bell, 1997; Boyce

et al., 2002). Receiver Operating Characteristics

(ROC), Kappa statistics and confusion matrices

(Fielding & Bell, 1997) combined with omission

and commission errors are widely used to estimate

model performance and to compare different methods

(Elith et al., 2006).

Modelling the distribution of marine species is

now common component of scientific research pro-

jects and applied management. The generality of the

developed models is essential for accurate predictions

of species distribution over extended spatial and

temporal scales. On the other hand, precision and

accuracy are essential for realistic representation of

species distribution and essential fish habitat identi-

fication. There is a plethora of modelling techniques

suitable for fisheries and acoustic data. However, in

the Mediterranean Sea, most of the studies predicting

marine species distribution have utilized GAMs

(Giannoulaki et al., 2008; Martin et al., 2008; Siapatis

et al., 2008), Maximum Entropy Models (MAXENT)

(Lefkaditou et al., 2008) and Discriminant Function

Analysis (DFA) (Tsagarakis et al., 2008).

The SDMs literature is rapidly expanding, reflect-

ing the rapid evolution of SDMs and their contribu-

tion to ecological studies. During the last decade

several reviews on SDMs were published (e.g.

Guisan & Zimmermann, 2000; Redfern et al., 2006;

Richards et al., 2007; Schröder, 2008; Valavanis

et al., 2008; Elith & Leathwick, 2009). Other studies

addressing essential issues of the development of

SDMs include topics such as methods of assessment

of prediction errors (Fielding & Bell, 1997; Boyce

et al., 2002), effects of spatial autocorrelation in

SDMs (Dormann et al., 2007), SDMs and ecological

theory (Guisan & Thuiller, 2005), new approaches to

SDMs (Leathwick et al., 2005, 2006a) and extended

SDMs comparisons to identify their efficiency and

applicability for use with several data types (Caruana

& Niculescu-Mizil, 2006; Elith et al., 2006; Leath-

wick et al., 2006a; MacLeod et al., 2008; Palialexis

et al., 2009; Aertsen et al., 2010).
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This study contributes to the latter two issues by

comparing several well-established and recently

developed techniques and by introducing the use of

ASNN. We compare SDMs that are developed under

different statistical principles (machine learning,

regression models and others) and represent the most

commonly used techniques in order to develop advice

for the selection of suitable modelling approaches

based on presence–absence acoustic data. The per-

formance of models in terms of goodness of fit to a

training dataset is initially tested in order to identify

the ability of each approach to accurately represent

species distribution. Second, a verification dataset is

used to evaluate the predictive performance of each

method and to contribute to a better understanding of

SDM performance with an independent dataset.

Finally, SDMs were applied to high resolution

predictors in order to generate distribution maps for

small pelagic species. Several criteria were used in

order to compare the efficiency of SDMs.

Materials and methods

Study area and data

The study area (Fig. 1) is Thermaikos Gulf in the

North Aegean, Northeastern Mediterranean Sea.

Thermaikos Gulf is a semi-enclosed basin, relatively

productive, because of the influence of four major

rivers. As a result, bottom relief is smooth due to the

continuous sediment input. Thermaikos Gulf forms a

wide continental shelf, which smoothly extends to the

south into the 1,400 m deep Sporades Basin. Water

mass circulation is predominantly cyclonic (Poulos

et al., 2000). Aegean water masses enter the gulf from

deeper layers along the eastern coast and move

counterclockwise towards the gulf of Thessaloniki.

This circulation produces a gyre in the area, which is

obvious in satellite imagery and affects the life-

history of pelagic marine species consisting an

identified recruitment habitat (Somarakis et al.,

2002). Riverine waters usually move to the south

along the western coast forming nutrient-rich water

masses.

Acoustic data were collected during April–May

1998 in Thermaikos Gulf using a calibrated 38 kHz

SIMRAD EK 500/BI 500 system (Bodholt et al.,

1989). The echograms were scrutinized, allocating the

nautical area-scattering coefficient (sA, m2 n mi-2,

NASC, MacLennan et al., 2002) to the target pelagic

species. The integration values, with a horizontal

resolution of 1 nautical mile, have been transformed

to presence–absence data (Fig. 1). Acoustic data have

been not converted to biomass in order to avoid the

propagation of uncertainty in species composition and

length distribution from the trawl sampling in the

response variable (Walline, 2007). Species identifica-

tion based on biological sampling as well as concur-

rent catch data indicated that the majority of the target

species were Sardina pilchardus (*55%), Engraulis

encrasicolus (*25%) and Trachurus spp. (\10%).

Thus, the SDMs will essentially depict the distribution

of sardine and anchovy in the study area. Life-history

information on these species was used to inform

several parts of this study, such as variable selection,

explanation of the distribution maps and comparison

of the SDMs with other related studies.

The acoustic dataset has been divided into two

parts. The first one is the training set, including 80%

of the initial data (black dots in Fig. 1). The second

one is used as the verification set (20% of the

sampling data—circles with crosses in Fig. 1) in

order to justify the predictive capacity of the SDMs.

Fig. 1 Study area and sampling transects. Black dots represent

the training dataset; circles represent the verification dataset
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The partitioning of data was based on Tetko et al.

(1995) whereby successive points are separated to

construct the training and the verification sets. In this

case, of every five sequential points, the first four are

included in the training set and the fifth assigned to

the verification set. The latter set thus consists of

sampling points that cover the whole sampling area

and are spaced *5 Nm apart. The selection of this

distance, which determines the proportion of the

training and verification datasets was based on the

fact that, at this distance, no spatial autocorrelation is

detected. Semi-variograms (Matheron, 1971) using

ESRI’s ArcGIS Geostatistical Analyst Software

(GAS) and Auto-correlation Function Estimation

plots in R statistical software (R Development Core

Team, 2005) were used to identify spatial patterns in

the raw data, the training and the verification sets and

model residuals. Moran’s I spatial autocorrelation

statistics (Moran, 1950) was also used to estimate the

spatial pattern of the two datasets. Furthermore, the

homoscedasticity of the residuals was tested by

plotting response and explanatory variables against

the residuals. Since the training and the verification

dataset were not normally distributed non parametric

test namely Mann–Whitney and Kolmogorov–Smir-

nov were used to compare the two datasets. By these

processes, the suitability of the verification set for

testing SDM predictions was verified.

The remotely sensed and topographical data that

have been used for SDM development are listed in

Table 1. Initially, a large number of explanatory

variables were collected that could potentially be

related to species distribution. These could be

classified as environmental variables (i.e. sea surface

salinity, current speed and direction), spatial data (i.e.

distance to coast), temporal data (i.e. date and hour of

sampling) and oceanographic features (i.e. produc-

tivity hotspots, Valavanis et al., 2004). After an

extensive exploration process (see Palialexis et al.,

this issue), only the non-correlated explanatory

variables were used in order to avoid any biased

estimations. Small pelagic species life-history indi-

cates that most of the variables used do greatly

influence species distribution (Daskalov et al., 2003;

Santos et al., 2004; Ruiz et al., 2006; Planque et al.,

2007). Additionally, certain oceanographic features

like upwelling, gyres and river outflows (Garcı̀a &

Palomera, 1996; Bakun, 2001) affect small pelagic

Table 1 Data used in models and their sources

Data variable Abbreviation Data type/sensor Archive source

Acoustic data sA Total pelagic NASC (nautical

area-scattering coefficient),

ESDU = 1 n mi

SIMRAD EK500/BI500 system on

April/May 1998 in Thermaikos Gulf

Sea surface temperature SST Grid/Aqua MODIS German Aerospace Agency (DLR)

Chlorophyll-a concentration CHL Grid/Aqua MODIS Distributed Active Archive Center

(NASA)

Photosynthetically available

radiation

PAR Grid/SeaWiFS Distributed Active Archive Center

(NASA)

Sea level anomaly SLA Grid/Merged Jason-1, Envisat,

ERS-2, GFO, T/P

AVISO

Bathymetry DEP Grid/Processed ERS-1, Geostat

and historical depth soundings

Laboratory for Satellite Altimetry

(NOAA)

Coastline Coast Cover/digitisation of nautical charts

and aerial photography

Hellenic Ministry of Environment

Distance to coast DCoast Grid and cover Extracted from coastline

Temperature slope

(thermal fronts)

SSTsl Grid Extracted from SST grid

Longitude and latitude

of stations

LON, LAT Cover in decimal degrees

and metres

SIMRAD EK500/BI500 system on

April/May 1998 in Thermaikos Gulf

Day-dark-night-dawn

categorical factor

DDND Cover and grid Based on sampling date and hour

Depth slope DEPsl Grid Extracted from bathymetry grid
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species distribution and are easily identified in

remotely sensed data (sea surface temperature, chlo-

rophyll-a concentration) (Valavanis et al., 2004).

Spatial resolution of the explanatory variables varied

from 0.01 to 0.04 decimal degrees. For modelling

purposes, all datasets were interpolated to the lowest

resolution. A dataset with the final selected explan-

atory variables that covers the study area at a

resolution of 0.01 decimal degrees was applied in

the SDMs in order to produce high resolution

prediction maps of small pelagic species. Since the

response variable is well explored, functionally

relevant predictors were selected in order to cover

both the environmental and geographical space (Elith

& Leathwick, 2009). The multi-dimensional nature of

the environmental predictors raises spatial autocor-

relation issues in the SDMs, which are discussed

later.

SDM

The SDM methods that were used are listed in Table 2.

The selection of the explanatory variables used in each

model was based on each method’s parameter selection

process or on the statistically meaningful contribution

of the parameters to models. Approaches that were

developed by the same method were compared

regarding their predictive capacity and the trade-off

between explained variation and model complexity.

The one that performed better was finally selected.

Less complex nested models developed by the same

approach reduced predictive capacity and increased

prediction errors compared to those finally selected.

Additionally, an increase in model complexity beyond

a certain threshold lead to an increase in prediction

errors and was penalized. Akaike’s Information Crite-

ria (AIC) (Akaike, 1974), Cross-validation, Root-

Mean-Square-Errors and Mean-Absolute-Error were

used to assess the trade-off between model complexity

and model predictive capacity, depending on the

technique. In this way, it was confirmed that no

unnecessary complexity was added in the models. The

documentations and software used for each SDM are

also listed in Table 2. All SDMs were developed as

proposed by the authors mentioned in Table 2. A

number of SDMs were implemented using several

combinations of variables but only the model with the

best fit and predictive capacity has been used in the

comparison process.

GAMs, Generalized Additive Mixed Models

(GAMMs) and Multivariate Analysis and Regression

Splines (MARS) belong to the family of regression

methods while MAXENT, BRT, ASNN, Artificial

Neural Networks Ensemble (ANNE) and Support

Vector Machines (SVM) are machine learning mod-

els. Bioclim Envelope Model (BIOCLIM) and Enve-

lope Score (EnvScore) are envelope style methods

using environmental data to define bioclimatic enve-

lopes. Environmental Distance is a two-distance

based method that makes use of a generic algorithm

based on environmental dissimilarity matrices.

Finally, Genetic Algorithm for Rule-set Prediction

(GARP) uses a genetic algorithm that creates eco-

logical niche models for species.

GAMs are generalized models involving a sum of

smooth functions of covariates (Hastie & Tibshirani,

1990; Wood, 2006). GAMMs are also used, comple-

mentary to GAMs, in order to deal with spatial

autocorrelation, which could lead to biased models

and predictions. GAMs are the most frequently used

approach in habitat modelling field (Valavanis et al.,

2008) and several recent modifications and applica-

tions have increased their utilization (Leathwick

et al., 2006b; Wood, 2006). The selection of the

GAMs’ smoothing predictors followed the method

proposed by Wood & Augustin (2002), using the

‘mgcv’ library (Wood, 2008) in the R statistical

software (R Development Core Team, 2005). The

degree of smoothing was selected based on the

observed data and the Generalized Cross Validation

(GCV) method (Wood, 2006). First order interactions

among the explanatory variables were also added in

several GAMs. The best-fitting model was selected

by using AIC and a stepwise forward selection was

applied to restrict collinearity among the explanatory

variables. The binomial family was applied using a

logistic link function. GAMMs were developed based

on the final GAM model with the assumption that a

specific correlation structure exists among all sam-

pled points in the study area. This structure was

modelled by using the binomial distribution.

Multivariate Adaptive Regression Splines (MARS)

(Leathwick et al., 2005) is an alternative regression-

based method used for fitting non-linear responses but

it differs from GAM because it utilizes piecewise linear

fits instead of smoothers. In particular, MARS is a

technique in which non-linear responses between a

species and an environmental predictor are described
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by a series of linear segments of differing slope, each of

which is fitted using a basis function as was described

by Friedman (1991). Breaks between segments are

defined by a knot in a model that initially over-fits the

data and is then simplified using a backwards/forwards

stepwise cross-validation procedure to identify terms

to be retained in the final model. MARS is capable of

fitting complex, nonlinear relationships between spe-

cies and predictors and in one of its implementations

can be used to fit a model describing relationships

between multiple species and their environment

(Leathwick et al., 2005). MARS is much faster than

GAMs in model development and is easily utilized

with GIS applications to generate species distribution

maps. In this study, MARS was developed using the

‘mda’ library (Hastie et al., 1994) in R statistical

software (R Development Core Team, 2005) and the

‘MARS public function 3.1’ by Leathwick & Elith

(per. comm.). The selection of the explanatory vari-

ables was based on their contribution to model

goodness of fit. Several models were developed

including models with interactions among the explan-

atory variables. The final model was selected by

comparing the predictive performance using Receiver

Operating Characteristics and the Area Under Curve

(ROC–AUC).

MAXENT estimates a target probability distribu-

tion by finding the probability distribution of maxi-

mum entropy (i.e. the most spread out or closest to

uniform), subject to a set of constraints that represent

incomplete information about the target distribution

(Phillips et al., 2006). MAXENT is a general-purpose

machine learning method with a simple and precise

mathematical formulation and it has a number

of characteristics that make it well-suited for species

distribution modelling. It is based on the maximum-

entropy principle developed by Jaynes (1957).

Maximum Entropy Species Distribution Modelling

software version 3.3.1 was used for model develop-

ment. Several models were developed and the one with

the lowest ROC–AUC and containing highly contrib-

uting variables was finally selected. MAXENT is user-

friendly software, which provides outputs containing

all the essential information about the models devel-

oped. Additionally, MAXENT’s data output can be

easily inserted in GIS for further analysis and gener-

ation of distribution probability maps.

In BRT (Leathwick et al., 2006a), each of the

individual models consists of a simple Classification

and Regression Tree (CART). The boosting algo-

rithm uses an iterative method for developing a final

model in a forward stage-wise way, progressively

adding trees to the model by re-weighting the data in

order to emphasize cases that are poorly predicted by

the previous trees. Advantages offered by a BRT

model include its ability to accommodate different

types of predictor variables and missing values, its

immunity to the effects of extreme outliers and the

inclusion of irrelevant predictors and its facility for

fitting interactions between predictors (Friedman &

Meulman, 2003). BRT models were constructed

using the BRT functions version 2.8, as developed

by Leathwick & Elith (pers. comm.) for R statistical

software (R Development Core Team, 2005), and the

‘mda’ library. The best performing model was

selected according to the area under the Receiver

Operating Characteristic curve.

Associative Neural Networks (ASNN) is a method

with improved predictive abilities compared to

traditional neural networks techniques, including

combination of feed-forward neural networks and a

k-nearest neighbour technique. This method uses the

correlation between ensemble responses as a measure

of distance of the analyzed cases for the nearest

neighbour technique. This provides an improved

prediction ability by correcting the bias of the neural

network ensemble. An ASNN has a memory that can

coincide with the training set. If new data become

available, the network further improves its predictive

ability and provides a reasonable approximation of

the unknown function without the need to retrain the

neural network ensemble. This feature of the method

dramatically improves its predictive ability over

traditional neural networks and k-nearest neighbour

techniques. Here, an Artificial Neural Network

Ensemble (ANNE) was developed using one hidden

layer with three neurons. The number of the nearest

neighbour, k, and parameter r for the Parzen-window

regression represent smoothing parameters of ASNN

in order to minimize the ASNN error for the training

set. ASNNs were initially applied in chemistry (Tetko

et al., 1995), providing more accurate predictions

than ANNE. More detailed information on ASNN

development can be found in Tetko (2002a, b). Both

ANNE and ASNN were developed in order to

compare ASNN performance to traditional ANNE

and to other modelling approaches. ANNE and

ASNN models were selected based on processes
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including the training algorithm, the number of

neurons and hidden layers and the iterations and

number of ensembles. The Early Stopping over

Ensemble (ESE) method was used to train the neural

networks (Bishop, 1995; Tetko & Tanchuk, 2002).

Models presenting the lowest Root Mean Squared

Error (RMSE) and Mean Absolute Error (MAE) were

finally selected (Tetko et al., 2008).

BIOCLIM is an ‘envelope’ method that imple-

ments a bioclimatic envelope algorithm (Nix, 1986;

Busby, 1991). Environmental envelopes are concep-

tually closely related to niche theory as they strive to

delineate the hyper-surface (or envelope) that best

circumscribes suitable conditions within the niche

hyper-space defined by the environmental variables.

The algorithm finds the mean and standard deviation

for each environmental variable (assuming normal

distribution) associated with the occurrence of sur-

veyed species presence points. Besides the envelope,

each environmental variable has additional upper and

lower limits taken from the maximum and minimum

values related to the set of occurrence points. In this

model, any point can be classified as: Suitable (when

all associated environmental values fall within the

calculated envelopes), Marginal (when one or more

associated environmental value falls outside the

calculated envelope but still within the upper and

lower limits) or Unsuitable (when one or more

associated environmental value falls outside the

upper and lower limits). BIOCLIM’s categorical

output is mapped to probabilities of 1.0, 0.5 and

0.0, respectively. OpenModeller software (Muñoz

et al., 2009) was used for BIOCLIM development.

Envelope Score (EnvScore) is analogous to the

BIOCLIM approach and implements a Bioclimatic

Envelope Algorithm. For each given environmental

variable, the algorithm finds the minimum and

maximum at all occurrence sites. The Envelope

Score algorithm is equivalent to the inclusive ‘OR’

implementation of Bioclim described in Piñeiro et al.

(2007). EnvScore models were developed using

OpenModeller software (Muñoz et al., 2009).

Climate Space is a principle components-based

algorithm developed by Neil Caithness (http://open

Modeller.sf.net). The component selection process in

this algorithm implementation is based on the Bro-

ken-Stick cut-off, whereby any component with an

eigenvalue less than n standard deviations above a

randomised sample is discarded (see also Muñoz

et al., 2009). The original Climate Space Model was

written as series of Matlab functions.

Environmental Distance (EnvDist) uses a generic

algorithm based on environmental dissimilarity met-

rics. When combined with the Gower metric (Gower

& Legendre, 1986) and maximum distance is set to

one, this algorithm should produce the same result as

the algorithm known as DOMAIN (Carpenter et al.,

1993). DOMAIN is a distance-based method that

assesses new sites in terms of their environmental

similarity to sites of known presence by transforming

the known occurrences into an environmental space

and computing the minimum distance in environ-

mental space from any cell to a known presence of

the species. EnvDistChe was developed using Cheby-

shev distance instead of the Gower metric. Cheby-

shev distance is a metric defined in a vector space

such that the distance between two vectors is the

greatest of their differences along any coordinate

dimension. Both models were developed using

OpenModeller software (Muñoz et al., 2009).

Support Vector Machines (SVMs) consists of a set

of related supervised learning methods that belong to

the family of generalized linear classifiers. They

could be considered as a special case of Tikhonov

regularization (Tychonoff & Arsenin, 1977). SVMs

simultaneously minimize the empirical classification

error and maximize the geometric margins. The

model produced by support vector classification

depends only on a subset of the training data because

the cost function for building the model does not take

into account training points that lie beyond the

margin (Vapnik, 1995; Schölkopf et al., 2000). SVMs

are able to represent nonlinear effects and interac-

tions between variables by projecting the explanatory

variables into a higher dimensional feature space

where the prediction problem has a linear solution

(Moguerza & Muñoz, 2006). Two SVM were devel-

oped (SVM-Nu and SVM) because of their different

performances in relation to fitting efficiency and

predictive capacity. SVM-Nu differs to SVM in the

degrees used in Kernel function. Both approaches

were developed using openModeller software.

The GARP uses a genetic algorithm to select a set

of rules (e.g. adaptations of regression and range

specifications) that best predicts the species distribu-

tion (Stockwell & Peters, 1999). The Genetic Algo-

rithm used in GARP is based on the basic concept

developed by Holland (1975). GARP creates
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ecological niche models for species, identifying where

the environmental conditions could maintain popula-

tions. For input, GARP uses a set of point localities

where the species are known to occur and a set of

geographic layers representing the environmental

parameters that might limit the species’ capabilities

to survive. In this study, based on openModeller

software (Muñoz et al., 2009), the algorithm applies the

Best Subsets procedure using the new openModeller

implementation in each GARP.

Comparison

There are several techniques to validate a model or to

compare the accuracy of prediction among different

models. Kappa statistics, ROC–AUC, k-Fold cross

validation, confusion matrices and classification

tables are well described by Boyce et al. (2002) for

presence–absence data.

Models that predict the presence or absence of a

species are normally judged by the number of

prediction errors. There are two types of prediction

errors: false positive (FP) and false negative (FN).

The performance of a presence–absence model is

normally summarized in a confusion or error matrix

(Table 3) that cross-tabulates the observed and pre-

dicted presence–absence patterns. Morrison et al.

(1992) refer to FP errors as type I and FN errors as

type II errors. FP or commission error leads to an

over-prediction while FN or omission error leads to

an under-prediction. Generally, omission error could

be characterized as ‘hard’—true error while commis-

sion might or might not be a true error. Commission

error can relate to unsuitable areas (true error),

suitable areas with no sampling effort (species may

be there), or suitable areas where historical (barriers,

dispersal capability) or biotic (competition, preda-

tion) factors have impeded occupation by the species

or caused it to go extinct. An accurate presence–

absence model should be characterized by low

omission error. On the other hand, low commission

error indicates that the model over-fits the training

data while high commission error indicates that the

model over-predicts the training set. Specificity and

sensitivity are terms analogous to omission and

commission errors, although they refer to correctly

predicted presence and absence instead of the errors.

Specificity is the proportion of observed negatives

correctly predicted and reflects a model’s ability to

predict an absence given that a species actually does

not occur at a location. Sensitivity is the proportion of

observed positives correctly predicted and reflects a

model’s ability to predict a presence given that a

species actually occurs at a location.

In this study, SDM comparison was achieved

using the best representative models derived using

each function. ROC–AUC (Fielding & Bell, 1997)

was used because in contrast to other model evalu-

ation methods (Kappa statistics, confusion matrices

and classification tables, see Boyce et al., 2002), it

avoids the problem of threshold value selection

(Lehmann et al., 2002). ROC-plots and the Area

Under the Receiver Operating Characteristic Curve

measure the ability of a model to discriminate

between those sites where a species is present and

those where it is absent, and they have been widely

used in the species distribution modelling literature

(Elith et al., 2006). ROC–AUC values range from 0

to 1, with 1 standing for perfect discrimination, 0.5

for predictive discrimination close to a random guess

and values \0.5 indicating performance worse than

random (Boyce et al., 2002; Elith et al., 2006).

The correlation (COR) between the observation in

the presence–absence dataset (a dichotomous vari-

able) and the prediction is known as the point bi-

serial correlation, and it can be calculated as a

Pearson correlation coefficient (Zheng & Agresti,

2000). It is similar to ROC–AUC but carries extra

information: instead of being rank based, it takes into

account the difference between the prediction and the

observation. This gives further insight into the

distribution of the predictions and provides informa-

tion on the model’s discrimination (Murphy &

Winkler, 1992).

The Kappa statistic (Cohen, 1960) summarizes all

the available information in the confusion matrix.

Kappa measures the proportion of correctly classified

units after accounting for the probability of chance

Table 3 Confusion matrix summarizes observed and predicted

presence/absence values

Confusion

matrix

Predicted

present

Predicted

absent

Actually present True positive False positive

(error type I)

Actually absent False negative

(error type II)

True negative
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agreement. Kappa, which is a chance-corrected

measure of agreement, is commonly used in ecolog-

ical studies with presence–absence data (Boyce et al.,

2002). It requires a threshold to be applied to the

predictions in order to convert them to presence–

absence predictions. Kappa provides an index that

considers both omission and commission errors. In

this study, a maxKappa is used for each model

generated by using the ‘PresenceAbsence’ library

of the R statistical software (R Development Core

Team, 2005).

Confusion matrices for the modelling approaches

were formulated for both predictions on the training

and the verification set. Omission and commission

errors, sensitivity and specificity as well as Kappa

statistics were estimated from the confusion matrices.

Since Kappa is threshold-dependent, in order to avoid

threshold selection, the maxKappa was used (Liu

et al., 2005). The correlation coefficient between

predicted and observed values in both datasets was

also estimated. ROC–AUC was also used to classify

the accuracy of the predictions. Finally, the proba-

bility maps/grids that were generated from each

modelling technique were compared for their spatial

similarities, using ESRI’s ArcInfo correlation func-

tion for grids.

The Akaike Information Criterion (AIC) was also

used for model selection. However, for many adaptive,

nonlinear techniques, estimation of the effective

number of parameters and consequently the AIC

calculation is very difficult (Hastie et al., 2009). For

this reason, all critical comparisons were mainly based

on cross-validation techniques and ROC–AUC, whilst

the AIC was used for the best candidate model within a

given model family, taking into account the trade-off

between model complexity and predictive capacity.

Cross-validation is also preferable for theoretical

reasons. Hastie et al. (2009) found, in simulation

experiments, that the AIC can greatly overestimate the

prediction error ([30%) compared to the cross-

validation procedure. Nevertheless, the ordinary

cross-validation procedure does not work well when

the data are autocorrelated, resulting in underestima-

tion in error prediction and consequentially in biased

model selection (Hastie et al., 2009). This is the case in

the observed spatio-temporal autocorrelation in

hydroacoustic abundance records, which is a property

of the biomass structure, not of the measurement

processes (Simmonds & MacLennan, 2005). Their

spatial characteristics, estimated for instance in geo-

statistics as nugget and range parameters, are affected

by the selected acoustic integration unit (ESDU).

Presence of a spatial structure in the errors, causes,

among other things, underestimated standard errors of

the slopes in the regression model and it represents a

serious shortcoming for hypothesis testing and predic-

tion (Ostrom, 1990). In this study, the spatial autocor-

relation of the training and the verification dataset was

estimated and the residuals of each modelling tech-

nique were checked for potential spatial patterns. In

GAMMs the spatial autocorrelation pattern was

inserted in the model, while in other methods several

covariates were used to absorb the autocorrelated

errors (Elith & Leathwick, 2009).

Initially, the predictive efficiency of each method

was tested on the training set. In this case, the best

performing techniques are considered to model the

sampling data more accurately and thus, they

describe species distribution more accurately. On

the other hand, this does not necessarily reflect the

predictive capacity of the methods, which is better

presented by the predictions on the verification set,

which is an unknown dataset to the training process

of SDMs. The process of model evaluation is crucial

in the SDM field, though there are diverse opinions

on what properties of a model are important and how

to test them appropriately (Elith & Leathwick, 2009).

During SDM development to explain patterns or

biological relationships, statistical tests of model fit

and comparison with existing knowledge are gener-

ally used. In the case where an SDM is developed to

predict species distribution in time or space, the

predictive capacity is evaluated using either resam-

pling techniques (cross-validation, bootstrapping) or

an independent dataset. In this study, both the fitting

efficiency and the predictive capacity of different

SDMs were compared. For these processes, ROC–

AUC was used as a threshold-independent index that

quantifies the predictive performance of the models

while omission and commission errors were used as

prediction quality indices with respect to over- and

under-prediction and over-fitting. MaxKappa was

also used to complement ROC–AUC, as a chance-

corrected measure of agreement, and COR was used

to estimate the similarities between observed and

predicted values.
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Results

Spatial patterns and comparison among training

and verification datasets

The selected validation dataset contains measure-

ments omitting, in each step, h units (h equals at least

5 n mi), where h is chosen according to the empirical

variogram of both validation set and prediction

residuals. The empirical variograms (Fig. 2) and the

autocorrelation function plots revealed a low auto-

correlation, even in distances below the h limit,

because the nugget was at least 65% of the sill and

the range was larger than 10 km (5.4 n mi). The

verification set presents no autocorrelation, as shown

in Fig. 2. The selected distance among the points in

the verification set reduces the spatial autocorrelation

(Moran’s I Index = 0.03), while in the training set

the index was equal to 0.14. The index indicates that

the verification set presents some clusters that might

be due to random chance; however, there is less than

1% likelihood that the clusters in the training are due

to chance alone. Residuals of the SDMs were also

tested for spatial patterns, but no significant patterns

were observed, presumably due to the adequate set of

predictors used and the appropriately specified model

fit (Elith & Leathwick, 2009). These results confirm

that the verification set is not spatially autocorrelated,

while there is an amount of autocorrelation in the

training set (Fig. 2).

Although the training and the validation datasets

differed in their autocorrelation pattern, it was verified

using the Mann–Whitney test that the null hypothesis

was not rejected (U = 1550, P-value = 0.48) and both

dataset refer to the same ‘population’ as derived by the

definition of the test. Additionally, the Two-sample

Kolmogorov–Smirnov test indicated that both dataset

have the same distribution since the null hypothesis

was also rejected (Z = 0.56, P-value = 0.87). The

mean and standard deviation of the validation set (196

sA and 220) was relatively higher than the training set

(193 sA and 215, respectively). Despite the similarities

among the two datasets and the fact that they corre-

spond to the same ‘population’ they could not be

characterized as identical since their vector of values

were not significantly correlated (Pearson’s correlated

coefficient = -0.202).

Fitting efficiency

ROC–AUCs and the associated standard deviations

of all models are presented in Fig. 3A. Models with

the highest ROC–AUC and the lowest standard

deviation provide the best fitted SDMs. This is

depicted in Fig. 3A (upper right). BRTs, EnvDist,

EnvDistChe and SVM-Nu out-perform the other

approaches achieving ROC–AUC greater than 0.9.

Regression models (GAM, GAMM, MARS) as well

as ASNN and SVM also acheived a high ROC–AUC

(0.86–0.9). ANNE, GARP and MAXENT had AUCs

in the range of 0.81–0.76. BIOCLIM, EnvScore and

ClimSpace did not perform so well, achieving ROC–

AUCs less than 0.64 while ClimSpace’s AUC was

0.52.

The COR, which indicates the similarities between

observed and predicted values, and the maxKappa are

presented in Fig. 3B. Generally, the clusters (in

relation to performance) of the modelling techniques

are analogous to those indicated by the ROC–AUC,

Fig. 2 Empirical variograms and autocorrelation function

plots of the acoustic density that correspond to the validation

dataset (A) and the training dataset (B)
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though some differences in the classification are

apparent for maxKappa and COR. BRTs and SVM-

Nu model predictions were most highly correlated

with the training dataset (0.87 and 0.85, respectively).

However, EvnDist and EnvDistChe achieved the

highest maxKappa (0.91). ASNN, GAM and GAMM

performed almost equally (COR: 0.67–0.64 and

maxKappa: 0.65–0.62). MARS performs equally to

Fig. 3 Comparison of fitting efficiency (A, B, C) and predic-

tive capacity (D, E, F) between the SDMs. ROC–AUC and the

associated standard deviation scored by modelling approaches

applied on the training set (A) and verification set (D).

Correlation Coefficient and maxKappa scored by modelling

approaches applied on the training (B) and verification set (E).

Omission and Commission errors of modelling approaches

applied on the training (C) and verification set (F)
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SVM (COR: 0.63–0.62 and maxKappa: 0.59–0.58).

ANNE achieved COR of 0.55 and maxKappa 0.52

while MAXENT and GARP present similar COR

(0.45 and 0.46, respectively) but maxKappa is higher

for GARP than for MAXENT (0.49 over 0.43).

Bioclim, EvnScore and especially ClimSpace obvi-

ously failed to fit the training dataset presenting COR

0.31, 0.29 and 0.04, respectively, and maxKappa 0.2,

0.16 and 0.02, respectively.

As mentioned above, omission and commission

errors reflect the quality of the predicted values with

respect to over- and under-prediction and over-fitting.

Figure 3C depicts the omission and commission

errors of the different modelling techniques applied.

High omission values indicate poor fitting efficiency

(e.g. ClimSpace). Zero omission error combined with

high commission error indicates over-prediction of

the potential species distribution (mainly EnvScore

and BIOCLIM). Zero omission error combined with

no commission error indicates that predicted values

over-fit the training values. So, it is expected that

EnvDistChe tends to over-fit the training set more

than EnvDist. The probability maps (are discussed

later) that were generated by relatively high omission

and commission errors SDMs provide a visual

interpretation of the biased predicted patterns.

Predictive capacity

Comparison of the observed values with predicted

values, derived by a dataset ‘unknown’ to SDMs,

indicates the predictive capacity of the techniques

applied and provides additional evidence of the

performance of SDMs (i.e. additional to information

derived from the fitting process and its diagnostics).

ROC–AUC and the associated standard deviation

from the application of SDMs to the validation set are

presented in Fig. 3D. Models with the highest ROC–

AUC and the lowest standard deviation could be

characterized as those with the highest predictive

capacity (Fig. 3D, upper right). Additionally, tech-

niques that performed relatively efficiently in pre-

dicting the training dataset, but failed to accurately

predict the verification set, probably tend to over-fit

the training data and thus suffer decreased generality.

According to the ranking in Fig. 3D, ASNN clearly

out-performs the other approaches, achieving ROC–

AUC close to 0.96. Regression models (GAM,

GAMM, MARS) as well as BRT, SVM and ANNE

also achieved high ROC–AUC (0.84–0.9). SVM-Nu,

EnvDist, EnvDistChe and GARP scored ROC–AUC

from 0.75 to 0.8. MAXENT and ClimSpace had

ROC–AUC values of 0.61 and 0.56, respectively.

BIOCLIM and EnvScore did not perform well,

achieving AUC 0.50 and 0.51, respectively.

The COR values, which indicates the similarities

between observed and predicted values on the

verification set, as well as the maxKappa values are

presented in Fig. 3E. Generally, the resulting groups

of the modelling techniques are analogous to those

arising from the ROC–AUC, though some differences

are seen between maxKappa and COR. ASNN shows

the highest predictive capacity (0.78 COR, 0.78

maxKappa). A distinct cluster described by the COR

range of 0.58–0.67 and maxKappa of 0.6–0.7

includes GAM, GAMM, ANNE, BRT, SVM, SVM-

Nu and MARS. GARP presents a COR of 0.42 and

maxKappa of 0.54. EvnDist and EnvDistChe scored

almost equally according to maxKappa (0.44) but

differ in the correlation of their predictions with the

verification set (0.47 and 0.39, respectively). MAX-

ENT, ClimSpace, BIOCLIM and EvnScore present

lower predictive capacities, achieving COR from

0.17–0.00 and maxKappa 0.24–0.00.

In contrast to Fig. 3C (which refers to the trained

models), Fig. 3F summarizes the predictive ability of

the models in relation to the verification set in terms of

the associated omission and commission errors. High

omission error indicated model weakness in terms of

identifying species occurrence, while high commission

error indicates a model’s inability to distinguish

unsuitable habitats. ASNN, GAM, GAMM, ANNE,

BRT and SVM provide the less erroneous predictions

regarding the independent verification set. MAXENT,

BIOCLIM and EvnScore are the models with the

highest commission error while SVM-Nu, EnvDistChe

and ClimSpace have highest omission error.

Probability maps

Models developed by each approach were applied to

grids of predictor variables in order to generate the

corresponding species distributions maps. When pres-

ence–absence data are used, the maps generated are

actually probability maps that denote the probability of

species occurrence. Acoustic data used in this study

were converted to presence–absence data. Presence

corresponds to high acoustic density, indicating suitable
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species habitats, while absence corresponds to low

acoustic density indicating species absence or low fish

density. Environmental variable grids were used for

generating maps at a spatial resolution of 0.01 decimal

degrees. In addition to predicting the fine scale distri-

bution of small pelagic species, these maps should be

helpful to identify potential habitat heterogeneity.

Figure 4 depicts the probability maps derived from

Fig. 4 Predicted

probability distribution

maps generated by machine

learning approaches
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machine learning approaches (BRT, ASNN, ANNE,

MAXENT, SVM). The probability maps of the regres-

sion approaches are presented in Fig. 5, while the

probability maps that arise from the envelope style

approaches are presented in Fig. 6. Neither EnvScore

nor BIOCLIM supports absence data. Finally, proba-

bility maps generated by EnvDist, EnvDistChe, Clim-

Space and GARP are depicted in Fig. 7. Among the

latter methods, only GARP supports the use of absence

data.

Table 4 presents the Pearson correlation coeffi-

cients among SDMs. The upper-right part corre-

sponds to the correlation among predictions on the

validation set. The lower-left part corresponds to

the correlation among the predicted grids as

estimated using ESRI’s ArcInfo correlation function

for grids.

Discussion

Spatial structure in data

Patterns of spatial autocorrelation are common in

species and biomass abundance or other ecological

records (Legendre, 1993). Consequently, standard

statistical models based on such data may violate the

basic assumption that residuals are independent.

Possible causes of spatial autocorrelation are catego-

rized in three groups: the nature of the biological

processes involved, the absence of important explan-

atory variables in the model and the linear modelling

of a process that in reality is non-linear (Legendre &

Legendre, 1998).

Commonly used methods to deal with the problem

of spatial structure in the errors, are based on:

Fig. 5 Predicted

probability distribution

maps generated by

regression approaches
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Fig. 6 Predicted

probability distribution

maps generated by envelope

style approaches

Fig. 7 Predicted

probability distribution

maps generated by

Environmental Distance,

GARP and climate space

approaches
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(a) adding covariates, which can absorb the autocor-

related errors (see review by Elith & Leathwick,

2009), (b) choosing an appropriate ESDU, which

reduces the autocorrelation for a given range,

(c) applying wavelet-based methods for removing

autocorrelation effects (Gudrun & Kühn, 2008),

(d) extending the model in order to include the

autocorrelation (e.g. extending GAM as GAMM)

(Dray et al., 2006) or using the autocorrelation itself

for interpolation purposes (Rossi et al., 1992;

Simmonds & MacLennan, 2005).

Several modifications of ordinary cross-validation

have been published to address the training-verifica-

tion data dependence issue (Burman et al., 1994;

Racine, 2000), omitting some data from the point of

prediction and its neighbours within h units and using

the remaining data for both model estimation and

prediction. In this study, the selected validation

dataset contains measurements omitting, in each step,

h units (h equals at least 5 n mi), where h is chosen

according to the empirical variogram of both valida-

tion set and prediction residuals. The empirical

variograms and the autocorrelation function plots

revealed a low autocorrelation, even in distances

below the h limit. The verification set presents no

autocorrelation, as shown in Fig. 2. A similar spatial

structure has been encountered in previous surveys

(October 1996, May 1997) even in different seasonal

conditions (Georgakarakos & Kitsiou, 2008). Results

from a comparative study using series of acoustic

survey data from five different locations in Europe

suggested that the spatial organization of the stock

would be more dependent on environmental param-

eters than on fish abundance (Petitgas et al., 2001).

This result disagrees with the general notion which

relates stock size to spatial organization, at least for

higher values of fish abundance (MacCall, 1990). In a

similar study, school cluster characteristics (e.g.

dimension, nb of schools) were correlated with total

population school number but not with total popula-

tion biomass (Muiño et al., 2003).

The autocorrelation characteristics of biomass are

in agreement with the school clustering tendency of

the biomass in previous surveys (1996, 1997) as this

is estimated by the distance between two schools in a

cluster (Petitgas et al., 2001). The estimated school

and cluster descriptors from these surveys (average

school number per km in the clusters, average ratio

for summed school lengths/cluster length and

maximum distance between two schools in a cluster)

indicate a small aggregative scale in the biomass

spatial structure.

Furthermore, the observed high representation in

the species composition of sardine and the strong

mixed aggregation with anchovy in the biological

sampling did not allow development of alternative

models utilizing the species composition as regressor

variables. For the same reason the authors decided to

work on acoustic density data without any transfor-

mation into biomass in order to avoid the propagation

of the variability from the trawl sampling in the

response variable. As a result, the distribution maps

reflect the distribution of small pelagic species in the

study area. In most SDM studies distribution patterns

refer to a single species. In this case, the distribution

maps correspond to small pelagic species in general

(but mostly sardine and anchovy). The variable

selection, the development of the models and the

generation of the distribution maps were all carried

out bearing in mind that the models refer to

multispecies distribution; thus common features of

their life-history were utilized. According to Stergiou

& Lascaratos (1997), the distributions of these

species are affected by environmental parameters,

fishing activity, inter- and intra-specific competition.

The use of small pelagic species as a group instead of

a specific species includes the between-species com-

petition and thus reduces the biotic parameters that

affect species distribution. On the other hand, the

distribution maps that are derived from this study are

unsuitable to identify specific species–environment

relations.

Verification process

The use of an independent well-structured presence–

absence verification set is proposed as the optimal

method to verify the predictive performance of the

SDMs (Elith et al., 2006). On the other hand, the use

of entirely independent datasets carries the compar-

ing of different sampling strategies instead of eval-

uating a model (Lehmann et al., 2002). Alternatively,

cross-validation (Jaberg & Guisan, 2001) and jack-

knife (Lehmann et al., 2002) are also proposed for

model validation, especially where there are not

sufficient data to be partitioned into a training and a

validation set. According to Lehmann et al. (2002)

and Jaberg & Guisan (2001), cross-validation,
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bootstrapping and jackknife validation approaches

are generally more practical, because they create

relatively independent random data subsets and allow

the use of all available data in the modelling process.

These approaches are very useful in cases where

insufficient data are available to be partitioned in a

training set and a validation set that is not used during

development of SDMs. However, Fu et al. (2005) and

Simon et al. (2003) observed that cross-validation

and, especially, leave-one-out cross-validation could

lead to underestimation of prediction errors. In this

study, a validation set was selected, as described

earlier, since there were sufficient sampling records

to formulate both datasets. The specific selection of

the validation set overcomes the underestimation of

predicted errors that could caused by cross-validation

approaches, especially when acoustic data are spa-

tially autocorrelated (Hastie et al., 2009). Addition-

ally, there is no risk of comparing different sampling

strategies, since the verification set is a sub-set of the

raw data. These were also verified by the comparison

of the training and the verification dataset. Generally,

the SDM validation process is of great concern

among species distribution modellers (Elith & Leath-

wick, 2009), while SDM evaluation would benefit

from identifying useful techniques in other fields.

SDMs comparison

Among the machine learning techniques, SVM and

MAXENT do use only presence data. Brotons et al.

(2004) showed that predictions based on presence–

absence data generally perform better than those

based on presence-only data. Presence-only models

can perform almost as well as presence–absence

approaches, especially when survey coverage is

evenly and widely distributed (MacLeod et al.,

2008) but they contain no mechanism to control for

biased sampling. In the present study, MAXENT

under-performed compared to other machine learning

approaches whereas SVM performed equally well

with approaches that use presence–absence data.

The probability maps corresponding to machine

learning models present notable similarities, identify-

ing high probabilities of species occurrence near the

coast, especially the west coast, and in the centre-to-

south of the study area. In SVM-Nu and MAXENT,

however, the predicted probability of occurrence along

the west coast is lower than was the case for the other

models. Additionally, high probabilities seem to

overlap with the sampling transects, which could be

an indication of over-fitting. Both approaches are

characterized by relatively high omission error and

thus do not predict the observed data accurately. SVM-

Nu shows remarkable fitting efficiency for a presence-

only model, having the second best ROC–AUC and

COR scores (after BRT). However, its predictive

capacity is relatively poor (as was indicated by the

moderate ROC–AUC in total, and the highest omission

error) and SVM-Nu over-fits the training dataset. This

was not the case for SVM, making it the best modelling

approach among those that do not support use of

absence data. SVM performs at a similar level to the

regression models.

BRTs, ASNN and ANNE were among the best

performing models. In particular, BRT presents the

best-fitting efficiency while its predictive capacity is

relatively high compared to the other models. ASNN

presents the best predictive capacity, and is charac-

terized by satisfactory fitting efficiency (ROC–AUC

0.86). ANNE performs relatively well compared to

other approaches, especially regarding its predictive

capacity. However, performs less well than ASNN, as

might be expected given its relationship to ASNN

(Tetko, 2002a, b). ASNN achieves ROC–AUC, COR

and maxKappa values that are markedly higher than

the second best approach (GAM).

GAM, GAMM and MARS generate very similar

probability maps, which confirms the similarities in

fitting efficiency and predictive capacity. The com-

parison among the regression models indicates that

GAM performs slightly better than GAMM while

GAMM performs slightly better than MARS. The

similarity in their performance was expected due to

their common statistical origin. Even if there are

other approaches that out-perform the regression

models, either in fitting efficiency or in the predictive

capacity, GAM, GAMM and MARS achieve rela-

tively high values in the criteria used for both

comparisons. Thus, the widespread use of regression

models compared to that of other traditional

approaches, like envelope style methods, GARP and

MAXENT to predict species distributions is justified

by their stability and performance.

The envelope style models failed to predict species

distribution, achieving the worst ROC–AUC, COR

and maxKappa values. They were characterized by

high commission error (1 for EnvScore and 0.79 for

Hydrobiologia (2011) 670:241–266 259

123



BIOCLIM) and, as shown in the probability maps,

both approaches over-predict the training set. Enve-

lope style approaches were initially developed to

model data on terrestrial species from natural history

museums and are probably unsuitable to model high

resolution and density species occurrence data and to

predict any habitat heterogeneity.

EnvDist and EnvDistChe performed relatively

accurately in fitting the training data (ROC–AUC

0.97 for both). Only BRT and SVM-Nu achieved

higher ROC–AUC, while EnvDist and EnvDistChe

achieved the highest maxKappa (0.91) and relatively

high COR values (0.73 and 0.83, respectively). Both

models are characterized by zero omission error and

EnvDistChe has almost half of the commission error

of EnvDist (0.22 compared to 0.41). The zero

omission error combined to the low commission

error for EnvDistChe indicate that the model over-fits

the training dataset and this fact is confirmed by the

probability map where high probability regions are

concentrated around the sampling transects. EnvDist

shows a tendency to over-fit the training set, although

not as much as EnvDistChe. This is also confirmed by

the predictive capacity of EnvDist and EnvDistChe.

Since the latter over-fits the training set, it is unable

to accurately predict the independent set, presenting

lower ROC–AUC, COR and maxKappa values than

EnvDist. Compared to the other approaches, both

models seem less effective in their predictive capac-

ity than regression models and most of the machine

learning techniques. Among methods that do not

support absence data, EnvDist and EnvDistChe

perform relatively well, but not as well as SVM.

ClimSpace failed to fit the training data or to

predict the independent dataset. It had the worst

ROC–AUC, COR and maxKappa values. Even if

several ClimSpace models were developed (the best

performing is presented here), none would succeed in

modelling the training set. Thus, ClimSpace seems

inappropriate to predict species distribution using

acoustic data.

GARP shows moderate performance in both fitting

efficiency and predictive capacity. Results and errors

indicate that GARP corresponds well to the variables

used, though the output, which reflects the environ-

mental conditions where species could maintain

populations is relatively coarse compared to the other

approaches. The inability to generate more detailed

species distribution maps makes GARP less efficient

than the approaches that support presence–absence

data, even if generally GARP’s output grid is in

agreement with the high probability spatial pattern

that is identified by the most accurate SDMs.

The predicted grids for Thermaikos Gulf identify

two distinct areas where small pelagic species are

concentrated: first the west coastline from north to

south and the east coastline of the Gulf, which are

characterized by the presence of riverine waters, and,

second, the central study area, which is related to

gyre formation (Somarakis et al., 2002). These areas

are characterized as nutrient-rich resulting in aggre-

gations of small pelagic species. The areas identified

are in agreement with other studies on small pelagic

species (Somarakis et al., 2002; Giannoulaki et al.,

2008; Tsagarakis et al., 2008). Correlations among

grids are generally in agreement to correlations

among predictions of SDMs on the validation dataset.

Generally, equally performing SDMs generate grids

that are significantly correlated, such as MARS and

GAMM. Additionally, grids that generated by SDMs

resulting from similar approaches are also highly

correlated, such as regression models and neural

networks. In order to evaluate the predicted spatial

patterns of small pelagic species distribution, we refer

to both these correlations among grids and to

previous studies in the area.

Evaluation of models

It is well known that species distribution modelling is

only as good as the data used (Hirzel & Guisan,

2002); in addition, SDM performance depends on the

number of samples that is used to train the model.

Different data types (e.g. abundance, presence-only

data and richness) could produce different SDM

rankings (Elith et al., 2006). Generally, predictions

based on presence–absence data perform better than

those based on presence-only data (Brotons et al.,

2004), while presence–absence models generally

perform better than abundance models (Francis

et al., 2005). Presence-only models can perform

equally well when survey coverage is evenly and

widely distributed (MacLeod et al., 2008). In princi-

ple, abundance models should be more informative,

however, their poor performance in practice is

related to the fact that real abundance data rarely

conform to standard distributions thus, violating

model assumptions. The assumptions associated with
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presence–absence data (binary distribution) are more

easily met. Additionally, the validation process for

presence–absence models (ROC–AUC, Kappa, Con-

fusion matrix) is well developed and more informa-

tive compared to the validation techniques used in

abundance models (k-fold cross-validation, models

calibration, correlation), since it is easier to interpret

presence–absence (binary distribution) models than

abundance models (other distributions, e.g. Gaussian,

Poisson). Finally, presence–absence models make

less bold predictions about species distribution and

are thus less likely to be proved wrong.

Studies of presence–absence modelling methods

suggest that several non-linear techniques (e.g. GAM,

ANN and MARS) are comparable in terms of predic-

tive ability and they are often superior to methods such

as traditional single decision trees (Ferrier & Watson,

1997; Elith & Burgman, 2002; Moisen & Frescino,

2002; Muñoz & Fellicisimo, 2004; Segurado &

Araujo, 2004). Here, the similar performances of

GAM and MARS is confirmed but ANNE and,

especially, ASNN show higher predictive capacity,

not only compared to traditional ANN but also

compared to other widely used approaches (e.g.

GAMs). Elith et al. (2006) evaluated the predictions

of 11 distinct models and 16 approaches that use

presence-only data. They classified the models into

three performance categories. The first, highest

performing, group includes MARS, BRT, generalized

dissimilarity (GDM and GDM-SS) and maximum

entropy (MAXENT and MAXENT-T) models. A

second group of methods includes most of the standard

regression methods (GAM/BRUTO, GLM, MARS and

GARP). A third group includes the methods that use

presence-only data (BIOCLIM, DOMAIN and

LIVES). This study supports the high predictive ability

of BRTs and the low predictive ability of Bioclim.

EnvDist performed better in the present study, com-

pared to the study by Elith et al. (2006), probably due to

the fact that this function over-fits the training data

(especially EnvDistChe), according to omission and

commission errors. The small difference in ROC–AUC

between MARS and GAMs that was observed in this

study has also been observed in other studies. In

particular, Leathwick et al. (2006a, b) fitted GAM and

MARS models to the distributions of fifteen freshwater

fish species in relation to their environment and, based

on ROC values, they found little difference in the

performances of both models. The higher predictive

capacity of ASNN and ANNE in models trained with

abundance data is also shown in Palialexis et al. (this

issue).

The uncertainty associated with SDM predictions

requires attention, especially when models are devel-

oped for decision-making and management purposes.

Uncertainty in SDMs results both from data deficien-

cies and from errors in specification of the models

(Elith & Leathwick, 2009). Problems related to

uncertainty are often ignored because they are difficult

to deal with. However, uncertainty can be minimized

by the selection of (a) functionally relevant predictors

that could explain the variance of the response variable

both in environmental and geographical space and

(b) SDMs that incorporate complex species–environ-

ment relations and variable interactions. The ‘black-

box’ nature of the machine learning techniques cannot

be very informative of such interactions, although

results indicated their high predictive capacity. There

is, however, a trade-off between variation explained

and model complexity.

The use of biotic interactions, related to species life

history, as explanatory variables in SDMs, e.g. prey–

predator relations and fishing activity could increase

the variance explained of the response variable. As

mentioned by Guisan & Thuiller (2005), very few

studies include variables that describe biological

interactions. Elith & Leathwick (2009) indicate the

difficulties of utilizing biological interactions as pre-

dictors. Such variables though could complement the

variation explained in environmental space and iden-

tify more complex relationships in ecological space. In

practice, the variable selection process depends on

(a) the availability and quality of data, (b) the ability of

data to explain a quantity of the variance of the

response variable, based on biological knowledge or

data exploration processes and (c) the assumptions of

the SDMs. The latter point could exclude use of

explanatory variables that are crucial from a biological

point of view. In this case other modelling approaches

could be useful in order to exploit the available

biological inferences. Since the aim of this study was

the comparative performance of SDMs, only well

known and explored data were used. Additionally, the

selection of explanatory variables was contingent on

the requirements of available modelling software with

grid generation capabilities. Fishing activity, inter-

specific competition and predator–prey relationships

are all likely to affect small pelagic species distribution
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(e.g. Ramzi et al., 2006; Sabatés et al., 2006). Such

information could potentially explain a part of the

variance that is not explained by the use of solely

abiotic variables in cases of identification of species

interactions or of the characterization of species

distribution that approaches the realized habitat

(Planque et al., 2007).

Most of the SDMs were able to depict the basic

species distribution pattern, which is also confirmed

by other studies in the area. The relatively novel

SDMs provided more detailed outputs and, poten-

tially, can indicate habitat heterogeneity with a high

spatial resolution. Among SDMs that performed

equally, the different explanatory variables used

varied in terms of the importance of their contribu-

tion. Each modelling technique is able to explain a

quantity of the variance of the response variable.

Even if the proportion of the variance explained is

equal for two SDMs, the part of the variance

explained might differ and this is reflected by the

different weights of the explanatory variables in the

SDMs. Issues as the above should be considered

carefully, especially when SDMs are used to improve

ecological understanding, or for conservation plan-

ning and management.

Conclusions

The comparison of 13 species distribution models

incorporating 15 different statistical approaches indi-

cated that approaches belonging to Machine Learning

Techniques are generally more accurate in predicting

species distribution, utilizing presence–absence data,

derived from predetermined sampling transects and a

sufficient number of high resolution explanatory vari-

ables. In particular, BRTs outperformed the other

techniques in fitting the training data, while ASNN

showed remarkable predictive capacity in comparison

with the other methods. SVM was the best performing

technique among the approaches that do not support

absence data. The aforementioned approaches did not

over-fit the training dataset. Machine learning is a

scientific discipline that is concerned with the design

and development of algorithms that allow computers to

change behaviour based on data. The evolution in

computer science supports more complex data simula-

tions and models as well as combinations of techniques

that are more accurate and efficient in their performance.

That is the case in ASNN, which is a combination of an

ANNE and a k-nearest neighbour algorithm, and in

BRTs, which combine the boosting algorithm and

regression trees to create a regression trees ensemble.

The use and the evolution of such techniques in species

distribution prediction generate a new perspective of

more realistic and applicable outputs, while their

performance may exceed that of more conventional

techniques (Elith & Leathwick, 2009).

Regression models are ranked relatively highly

compared to other techniques, with respect to their

fitting efficiency and predictive capacity, and flexi-

bility in modelling several types of data. GAMs,

MARS and GAMMs performed almost similarly,

though GAM output was slightly better. GAMM is

able to model spatial autocorrelation, which is

certainly present in the training dataset used, but

did not exceed the predictive capacity of GAM. This

could be due to the restricted spatial autocorrelation

as shown in the variogram of the training dataset and/

or because the autocorrelation in the response vari-

able was adequately explained (statistically at least)

by autocorrelation in the geographical and environ-

mental predictors (Elith & Leathwick, 2009). As a

note of caution, it should not be assumed that this will

always be the case. Nevertheless, regarding regres-

sion models, it is suggested to use GAM for species

distribution predictions or MARS as a more user-

friendly approach.

When absence data are available, the loss of

information in presence-only models affects their

fitting efficiency and predictive capacity. In this

study, approaches like BIOCLIM, EnvScore, Clim-

Space and MAXENT failed to generate competitive

outputs as compared to the other approaches. EnvDist

was the only exception, although there are indications

that this approach tends to over-fit the training data.

Generally, the fitting efficiency and the predictive

capacity that characterize a model are strongly

depended on the quality of the training data. In

presence–absence data, derived from predetermined

sampling transects that were modelled with high

resolution environmental satellite and geographic data,

BRTs and ASNN are suggested as the most appropriate

techniques. Machine learning approaches, with their

extensive analytical capabilities, could be useful tools

for species distribution predictions. However, different

study cases and datasets might require different

approaches.
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