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ABSTRACT

Time series of loliginid and ommastrephid landings were analysed taking into account
spatio-temporal descriptors of sea surface temperature (SST). The data are based on fish-
eries statistics recorded from the three most important fishing ports in the Northern Aegean
Sea (1984-1999) and NOAA satellite images processed using GIS and image analysis
tools. Autocorrelation (AC) and partial autocorrelation (PAC) functions were estimated
leading to the identification and construction of seasonal ARIMA models, suitable for
explaining the time series and forecasting future abundance values. The performance of
the models was tested by comparing the predicted against the observed data of the last
year (1999) and by examining the distribution and the AC of the residuals. The analysis
provided results characterizing the different fishing patterns in each geographic area, as
well as new series containing seasonally adjusted values, trend. cycle and error compo-
nents of the model. Time series of several statistical parameters describing spatio-tempo-
ral variations of the SST were estimated and analysed aiming at the detection of anoma-
lies and possible stock-environment relationships. Cross-correlation analysis between
SST parameters and stock biomass indexes showed significant correlation coefficients.
before and after compensation of the seasonal fluctuations by seasonal differencing. The
results suggest that SST can be a leading indicator for stock prediction of the target spe-
cies in the survey area.

Studies on the biology and fisheries of the cephalopods in general and in particular of
those species having a resource potential in the Mediterranean are rather limited com-
pared with those of the adjacent NE Atlantic waters or other sea basins and oceans of the
world, e.g., Pacific, Antarctic. Furthermore the currently available information on the
exploitation and study of the cephalopods in the Mediterranean comes mainly from the
western basin while in the eastern basin there is only scattered information on the species
exploited (Worms, 1983).

With a total length of coastline in Greece over 15,000 km, fisheries production should
play an important role in the national economy. Nevertheless, the fishery sector accounted
for 0.31% of the Greek National Product (GNP) over the 1980-87 period and 2% of the
mean revenues from the agricultural sector that made up 13.7% of GNP (Stergiou, 1993).
Despite the fact that various attempts have been made to describe and assess the state of,
and to model and forecast, fisheries production in Greek waters from commercial fisher-
ies catch statistics (Stergiou et al., 1997 and references therein) very few concern cepha-
lopods (Stergiou, 1987, 1988, 1989) and most cover the period before 1985.

The cephalopod categories of interest presented in this study are the fished species of
Jong-finned squids (Loliginidae) and short-finned squids (Ommastrephidae). Concern-
ing loliginid squids the species taken into consideration is the European squid Loligo
vulgaris Lamarck, 1798, a species with commercial importance occurring throughout the
Mediterranean and the eastern Atlantic (Roper et al., 1984). The other commercially im-
portant loliginid species, the veined squid Loligo forbesi Steenstrup, 1856 does not com-
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i R T Y n i Sea (Koutsoubas et al,, 1999),
Concerning Ommastrephid squids, the species taken into consideration is the broadtail
squid Mex coindetii (Verany, 1839), a species with commercial importance which ex-
tends across the Mediterrancan and Atlantic (Roper et al.. 1984). Concerning the remain-
ing ommastrephid species, the European flying squid Todarodes sagittatus (Lamarck,
1798) presents a scattered distribution in the study area (D'Onghia et al., 1996) while the
lesser flying squid Todaropsis eblanae (Ball, 1841) is not only absent in the Greek fish
markets but also has a negligible contribution in the ‘phalopod catch in h surveys
conducted recently in the Greek Seas (Koutsoubas et al., 1999 and references therein),
A very comprehensive sourcebook providing the foundation for cephalopod manage-
ment strategies has been published by Caddy (1989). 1y izes the dynamics of 30

els (Forecasting Yield and Abundance of Exploited Invertebrates).

Forecasting models are very attractive for scientists and policy makers, especially dur-
ing critical management periods. They facilitate the comprehension of relationships among
biological and environmental interactions and can improve the efficiency of fisheries
management, However, their reliability depends on severa] assumptions concerning the
stationarity of the System parameters, which characterize the system ‘biological resources-
environment-fishing activity’, as well as the quality of the available time series,

dynamics theory (Schaefer, 1984; Fox, 1970) and stochastic models originating from the
econometric and business literature. Stochastic models were first applied to ecological
problems by Moran (1949). It is widely accepted that the stochastic models have an ad-
vantage over the deterministic, especially due to the fact that the causal relationships of
the latter involve unobservable variables or unknown lagged processes (Cohen and Stone,

Several types of stochastic models have been developed, both in the time domain
(ARIMA, uni- or multivariate transfer function noise models) and in the frequency do-
main (spectral and wavelet analysis) for estimating the system parameters. ARIMA and
transfer function noise models result in similar precision and aceuracy in the short-term
forecasting of the commercial harvest (Tsai and Chai, 1992). Generally, it is widely ac-
cepted that stochastic models provide more reliable forecasts compared to the determin-
istic models (Cohen and Stone, 1987),

Modelling of fishery landings using temperature as the main environmental predictor
has been repeatedly used to uncover the role of the environment in the distribution and
abundance of the target populations (Cushing, 1981; see reviews in Stergiou, 1987, 1989).
Satellite technology provided accurate estimations of the sea surface temperature (SST)
in high spatial and temporal resolution over the st two decades, allowing both shori-
and long-term prediction of biomass density or production,

The developed models are based on ARIMA uni- and multivariate time series analysis
techniques and the response variable is the landings of the ¢ liginid and on phid
squids in Greek waters, aiming to contribute towards the rational management and pro-
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cal properties of the data, without involving the biological or the physical back 1 of the sys-

tem. This kind of analysis supposes that other *external factors’ do not participate in the process
is

Jevel or that there it hastic. For each developed ARIMA model the stan-
dard three-steps procedure has been followed, namely model identification, parameter estimation
and finally the di 15 of the simulation and its verification (Makridakis, 1990).

As mentioned above, the input series for ARIMA needs 1o be differenced 1o achieve stationarity.
The order of differencing is reflected in the d parameter. The general model introduced by Box and
Jenkins (1976) can be summarized by the use of the following three types of parameters: the
autoregressive parameters (p), the number of differencing passes (d), and moving average param-
cters (g). In the notation introduced by Box and Jenkins, a model deseribed as (0, 1, 2) means that
it contains 0 (zero) autoregressive (p) parameters and 2 moving average (q) parameters which were
computed for the series after it was differenced once. Similarly the required parameters sp, sd and
54 of the seasonal ARIMA process are determined according to the results of the comresponding

ACF and PACF. The approach used quently was to esti the | model first, then
study the residuals of this model to get a clearer view of the non-seasonal model involved. If the
identification of the seasonal model was correct., these residuals showed the 1 portion
of the model.

After the identification of the tentative model, its were esti 1 applying maxi-
mum-likelihood methods. The final results include: the parameter estimates, standard crrors, esti-

mate of residual van; tandard error of the esti log likelihood, Akaike's information crite-
rion (AIC), Schwartz’s Bayesian eriterion (SBC). The minimizing of SBC and AIC were used,
taking into account both how well the model fitted the observed series, and the number of param-
eters used in the fit (SPSS manual, Trends, Release 6.0).

In all cases, if not mentioned otherwise, the data from 1984 to 1998 were used for evaluating

(fitting) the model, except in the case of Al froupolis Oy phids, where landings data
were not available before October 1992, The data of the last 12 mo (1998-1999) were used for
testing the ing power of the established models.

Resuits

ExrLoratory Time Series ANALYsIs

The monthly pattern of the landings for the two groups showed the typical catch oscil-
lations for cephalopods in a finer spatial resolution, characterized by a very low catch
during the June-July and August period. The time series of the monthly landings of the
three important fishing ports of the northern Aegean Sea, for the period between 1984
and 1999, were plotted (Fig. 2). Concurrent monthly measurements of the spatially aver-
aged Sea Surface Temperature (SST) showed a similar oscillation in the corresponding
time series. As an example the S5T time series of the area 13 is plotted, corresponding to
the fishing port of Thessaloniki (Fig 3).

Periodicities Observed in the Time Series.—Time series of landings by species group
and fishing ports were pre-processed in order to fulfill the stationarity requirements and
their ACF and PACF were estimated for both un-differenced and first order seasonal
differenced data (Fig. 4). Comparing the estimated coefficients to the plotted 95% confi-
dence intervals, a series of important conclusions can be made. The exponentially declin-
ing ACF and the significant correlation at lag one in PACF indicate an autoregressive
process of order one. Interpreting the same pattern of the correlograms it is concluded
that the inherent moving average process in the time series is of order 1 or 2, Further-

mare, from the correlograms based on the seasonal diffe | data, the g e
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Figure 3, SST time series from major fishing area 13 and the seasonal decomposition.

Correlations Between Time Series.—Cross-Correlograms (CCFs) were calculated be-
tween ‘vearly' SST values and corresponding annual catch. The spatially averaged SST
of the Januarys or Februarys or Marches, etc was selected as the *yearly” representative
temperature in each CCE. Finally, a CCF was estimated for each target species, month
and major fishing area, namely in the two areas of the northern part (major fishing areas
13: Thermaikos Gulf, 14: Kavala and Alexandroupolis) and in the castern part of the
Acgean Sea (fishing area: 15). Only correlograms with statistically significant coeffi-
cients are listed in Table 1. The results showed a clearly different behaviour of the catch
in the studied species in the different major fishing areas. Loliginid local catch was mainly
positively correlated with the mean SST observed in area 13, while the Ommastrephids
cateh was negatively correlated correspondingly with the mean SST of area 14.

Cross-spectral analysis of the same data set showed how well the SST and the catch
time-series correlate as a function of frequency. The cross-sp | amplitude based on
the yearly differences of SST and the catch values served as a measure of the covariance
between the frequency components of the two time series. Thus we can conclude from
the plot (Fig. 6), that the frequencies corresponding to an interval of 2 yrs between the
two time series covary.

SeasoNAL DECOMPOSITION

Monthly landings in all fishing ports showed a strong seasonal periodicity (Fig. 2).
which may cover any other weaker periodicity or trend included in the time series. Stan-
dard Seasonal Decomposition procedures were used to investigate the significance and
the meaning of other components. The series of each fishing port were decomposed into
a seasonal factor, a cycle component. a combined trend and the remaining *error”. Taking
into account that seasonality did not increase with the level of the landings an additive
maodel is selected (Makridakis. 1990).
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Figure 4. A and B: Autocorrelation function (ACF) and Partial autocorrelation function {Partial
.ﬁlg'F'j of loliginid {A) and ommastrephid () natural log transfe 1 landings a loniki

The In$ distance is in months. C and D: The same plots as above but after scaso
loliginids (C) and phids (D)

t Port.
nal differencing for

The two comy the | adj factor—SAF and the de-seasoned trend
and cycle—STC were estimated for each month and target species. The SAF pattern
differed between the species groups and showed a larger variation among the fishing
ports for the Ommastrephids. The SAF plots portray the well-known rapid decrease of
the landings during July and August, as well as a possibly second maximum of the
Ommastrephids landings during May.

The next component, STC, contains the trend component plus the cycle and therefore
its analysis could give indications for trends longer than 12 mo. The STCs from seasonal
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Figure 3, Spectral densities of loliginid (above) and _ummusmphid (below) monthly landings time
series, The difference in the frequency components is noteworthy.

decomposed time series of both monthly landings and SST were further analysed, inves-
1gati 1 istics (Fig. 7,8). g
llg:ll:?g_‘ﬁilf A('-'F ﬂ“d. CCFﬂa@f}e"m:s (' % correlations with the SST at time 1§gs of
0. 12 and 24 mo (the positive lag axis implies always the effect of SST on m; |n°.:mm;§s).
‘I:hc coefTicient at 24 mo was slightly stronger compared to that at 12 mo. On the ry,
Ommastrephids sk d negative lations at 0 and 12 mo lags.
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ARIMA Mobris
ARIMA models have been developed for loliginid and ommastrephid monthly land-
ings covering the period 1984-1999, The last 12 mo (July 1998 till June 1999) were kept
out of fitting and used for forecasting evaluation. The steps for model identification of
each series were:
(a) The ACF and PACF of the natural log transformed series showed large values at lags
12, 24 and 36. This can be seen, e.g.. in Figure 4A,B for L liginids and O phid:
of Thessaloniki (the other ports gave similar patterns and therefore they are omitted
here). The slowness with which values at those seasonal lags declined confirmed that
seasonal differencing was required to achieve a stationary mean.

Figure 6. Cospectral density function between SST vear change and annual landings change for
ing March -
2 I

(b) The seasonal ACFs and PACFs had hed out the rapid | fluctuations (Fig
4C.D). The ACFs still showed significant correlation, with a single seasonal spike
emerging at lag 12 for loliginids and phids. The PACFs showed a large

spike at lag 12 and a smaller one at lag 24,

(¢) The pattern “one spike in ACF, rapidly declining PACE" indicated an MA(1) (Moving
Average of order 1) process, here a seasonal MA(1) process, since the pattern ap-
peared at the seasonal lags. The tentative seasonal model was (0,1,1) since the data
were from seasonal differenced series.

(d) After the coefficients of the seasonal model had been estimated, the ACF and PACF
plots of the residuals of these scasonal models (not shown here) were examined, Their
ACFs started large and then died out, while their PACFs also died out somewhat more
quickly. The non-seasonal model could therefore be ARIMA (1,0,1) in all cases ex-

cept for ¢ phids of Thessaloniki where the non-seasonal model of ARIMA
(1,1,1) performed best.
(¢} The combined tentative models incorporating both non-seasonal and | param-

eters in the ARIMA(p-d-q) format were ARIMA(1,0.1)(0,1,1),, or ARIMA (1,1,1)
(0.1,1),,. The coefficients and the summary statistics of these univariate ARIMA models
are given in Tahle 2
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b e it Bt et Gt i 0Tt ol S e =

Area  Species Month Correlation Lag (year) _ Significance
13 Loliginids March 0.62 0 e
April 043 2 *
June —0.48 I *
September 0.54 1 b
October 0.66 1 ok
December 0,36 3 "
(8] phid Septemk 0.69 1 o
14 Ommastrephids January -0.70 0 e
February —0.67 0 LS
March -0.59 =1 i
April -0.55 0-1 "
October ~(.63 0 -
Movember -0.57 -1 .
December -0.61 0-1 b
15 Ommastrephids January (.60 z o
Loliginid: Junuary 0,42 0 =
<+ Correlation is significant at the 0.01 level

* : Correlation is significant at the 0,05 level

IMscussion

Thie ExviRosmeNTAL COMPONENT

The northern part of the Aegean Sea is characterized by higher commercial fisheries
yield. Spatial analysis of both SST and Chlorophyll-a indicates that the water surface in
\he northem areas reflects the influence of the Black Sea current in the Acgean Sea (Carter,
1956; Balopoulos, 1982). The fact that this geographic region also represents the most
productive area for Cephalopods emphasizes the importance of taking environmental
conditions into in the il of the resources.

The theoretically expected positive correlation between temp and production
concerns nutrient rich arcas, while in oligotrophic systems. such as the Aegean Sea, higher
production may be interpreted as being due to the occurrence of water masses rich in
nutrients (Haese, 1996).

Some of the positive correlations d between Loliginids and SST in area 13
are based on the higher catch values in the years 1988, 1993 and 1995 simultaneously
with increased monthly SST means during February and/or March of the same years
{Table 1). During this period the area is dominated by an increased flow from four large
river systems (Balopoulos. 1982) and cold, less saline, surface water originating from the
Black Sea (Georgopoulos, 1984). The second time period with higher crosscorrelations
between landings and SST for both species groups was 1 during September—
October. This period is characterized by large scale changes in the northern part of the
Aegean Sea, which is now warmer compared to the eastern part (Georgopoulos, 1984).
Both seasons coincide with the major pre-spawning and spawning periods of the squids
and may influence their natural mortality during this sensitive life period. It is worth
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SMAI D068 S 00768 00908 00696 0.1635
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Approsimaied probability  ARI 00001 00003 0w 00002 00000 poesd
Mal LI 00545 LMEE LLTLEH] o020 L0004
SMAL G000 00000 00000 000 00000 00sip
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ring .'“;wm;m of T SHIAT: Seasonal movang averape soeTicies of
ing that the temp in September—October covaries with the next year land-

ings, as it is indicated by the significance of the CCF at | yr lag,

The environmental character of area 14 is strongly affected by the cold Black Sea
surface layer, 5-25 m thin, coming out through the Straits of Dardanelles (Theocharis et
al., 1987). The increased catch of ommastrephids coincides with the occurrence and
strength of the nutrient rich surface layer from the Black Sea, as was concluded from the
high negative CCF coefficients in Table 1. However, it is not evident from the results that
the Black Sea water is the only possible factor affecting the squid catches. As mentioned
in Table 1, the temp is cross-correlated with the | liginid landings in area 13 and
with the ommastrephid landings in area 14. This could imply that other factors such as the
spatial and bathymetric characteristics of the areas play an important role. A possible
explanation of this spatial difference is that ommastrephids are expected to live in deeper
pelagic zones than the loliginids (Raper et al., 1984) and therefore were better repre-
sented in the catch of an open area, such as area 14,

Positive correlations between temperature and cephalopod landings have also been
published (see Stergiou, 1987}, without inter pretati ing the lity of the
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Fig ey odel: |1hI 5% uppe ( 1 o ." .I.ihl .'I If h
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I 5 (F
start of the forecasting period (July, 1998).
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Chlorophyll-a content, as estimated from the SeaWiFS images, scems to explain the spa-
tial distribution of the cephalopod production (Valavanis et al., 2000).

Tue MOBELING APPROACH
As was ioned in the introduction. stoch

ic models have several advantages com-

pared to deterministic or biological models (Cohen and Stone, 1987). The selection ofthe

appropriate model, however, depends seriously on the Praperties of the available data,

Classical regression models are statistically inappropriate if the residual terms are

autocorrelated, a common situation with autocorrelated series (Bowerman and O’ Conell,

1987). ARIMA models work efficiently in the simulation of autocorrelated series, whilst

weak or non-autocorrelated annual time series could be modelled successful ly using Multi-

Regression methods (Stergiou and Christou, 1996),

In general, at least 50100 observations are required in order ta develop an acceptable
model. Therefore, it was necessary, in the present investigation, to develop monthly mod-
els in order to overcome this problem. In addition to this, comparisons made between
yearly averaged (or integrated) values of landings and environmental variables can not
detect possible interrelations at the monthly level. On the contrary, models based on
monthly values can provide both high and low luti I hips, if the lity
is taken into account.

For seasonal time series, such as the monthly landings used in the study, the required

of data i . b each month is much like a single observation, The
number of the January, February, ete., observations becomes critical and perhaps more
historical data are needed 1o sim ulate a suitable seasonal madel (Montgomery etal., | 990),
When the number of observations js relatively low, the serial autocorrelation appears
weaker (giving less significant coefficients), and Time Series technigues provide little
gain compared to lard regression (linear ar non-linear) techniques.
The strong seasonal character of the monthly landing time series as portrayed in Figure
5 also made it difficult to reveal periodicities of longer intervals,
Another weakness, not only for the ARIMA but also for most models, is the assump-
tion that the system parameters in the future will be identical to the past. Intelligent or
t ic methods for adapti g the | during the evalution of the process do not
exist in multivariate ARIMA models. Despite these problems, ARIMA models are in
general the most efficient prediction method available today (Montgomery et al., 1990),

The performance of the univariate ARIMA model expressed the autoregressive charac-
ter of the landings time series, namely the dependence of the landi gs att=0on landings
in the years -1 and 1-2. The model confirmed a short-term persistence or latency in the
system, which hindered high fi quency changes of the landings. This latency indicated
that driving parameters, including fishing effort, did not change in the short term and that
the environment may affect the resources contributing to the formation of 2ood or bad
year classes in time periods, longer than | or 2 yrs. This is in accordance with the esti-
mated Cospectral density, which is higher during the first 2-3 yr intervals (Fig. 6).

The hypothesis concerning the role of the environment was tested by developing
multivariate ARIMA models, which included the SST p 5. The incorporation of
the SST data into the ARIMA models did not improve the goodness of fit greatly. This
may be partly due to the lack of consistent timing in the relationship between SST and

" Lt R e it ety i i e
landimgs ab ine montney iever Liabre 1y ACaiticm

i idual
icti formance varied from model to model nnd_ I.hf: reduction :l‘ rllll_:c:::;d::l
pre“d;;:: I:v:not more than 13.5% (Table 2). This ma’f.md'i,al: t;:a.:lt:: e
::ciudcd in the model could act s;mcrgcli_: 10 lhfcﬁ?:s::-::;;:. n.-avariahilitv ey
i ere best representatives o ¥
deseriptors were not the St epre i
i 1 is req| il ) i
hcger sImt‘he Iaci( of CPUE data the authors minimized the c-l'\“e;l of lhcdl‘::l:l:i‘gmes :m
i i i is obvious that this proce:
iati i ncing the landings data, It is of it oe bl
. :lnatlf!ﬂ-l . S;ntr:;ccquifnlcm to abundance indices. However, uspmally :-{');;shoum i
I““m'jn'.:.lL ¢ :;l?:‘;ntrihutinn of abundance variations in the transformed time seri
BeOEes: Ao e
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h1$her cn:;mmﬁim :-:t::nnmmd bftween the transformed Innd_mga and Sl: T ::l;inx-;
The re ?L‘E:ionphclwcen abundance and SST, without cx_r:ludmg a m&*n H:‘; e
-y fishing activity. However, it is difficult to imply a cause-effec | -
i SST'OH it '!I?I]d p without investigating the sensitivity of the earl
ship between and temy it 5 iy
i zph cle to certain environme | )
& e l!"c c$ph‘:‘l:.)3m! e CI)'L. :‘atchcs (CPUE) could provide a powerful rm_zthr:islz:-
: s i 5 ance. Unfortunately, there are many aspec
sstimating trends in the stock abundance. . e
:}illl?;?ng'c behavior that will cause CPUE to be not p_mp?monal to :fl?und?nnx: .
a .vurv small spatial scale (Hilborn and[Wa]:'crs;:iga.;};t:.;iﬁed ol ey
abunc indic uire large samples of spatial 1 f D
dbl"}dﬂﬂf.c ﬁ?;?&s :rfq pciagi:gspccies, due to their schooling behavior (]Pal:l;::;: n::d
?)t::zll:lu Tgf:i] For all these reasons the analysis was cnnccnlr;a;:e:: ; ;e{ el
: fandi : from the proven e ;
ifferel landings and catch data. Apart 0 ; s
illllr:‘;;::c;?duls‘ wi%ich can support the important pracma_l :llm‘)_rfﬁthn:rcil“?virc:! nmcﬁm
analytical interpretation of the relations among the biological a
maore ani

parameters still requires more effort,
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