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Abstract 
Accurate techniques that are able to identify potential distributions of small pelagic fish in any 
spatial or temporal scale are essential tools for fisheries management purposes. Additionally, 
knowledge on small pelagic species distribution could be used for the proper sampling strategy 
designation and decision making for effective management. In this work, acoustic data 
corresponding to small pelagic species concentrations are modelled with environmental parameters, 
to produce predictions of small pelagic species distribution in Thermaikos Gulf, North Aegean Sea. 
Generalized Additive and Mixed Models are used for the modelling development and prediction of 
species distribution, while GIS routines are used for the mapping. Specific environmental-fish 
distribution patterns are also identified and discussed.     
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1. INTRODUCTION 
 
The prediction of species spatial distribution is an important research theme to a variety of 
applications in ecology, evolution and conservation science [1]. Many studies are based on models 
development for the temporal and spatial prediction of species distribution and identification of 
species-environment relations [2, 3]. GIS and remote sensed data provide essential tools for 
decision making and management purposes, especially when used with Resource Selection 
Functions (RSF) [4]. RSFs are statistical models defined to be proportional to the probability of use 
of a resource unit. Habitat modelling is an applied science and many different techniques have been 
developed and evaluated for the acquisition of realistic and accurate distribution maps. Among 
modelling techniques, Generalized Additive Models (GAMs) [5, 6] are perhaps the most common, 
and well developed and documented [7, 8]. Generalized Additive Mixed Models (GAMMs) are 
more complicated than GAMs, although they provide specialized approaches to deal with modelling 
limitations. These tools offer accurate species distribution maps based on sampling areas, as well as 
predictions of species distribution in wider areas than the sampling, or in a different temporal 
extend. GAMs and GAMMs are able to identify potential species distribution–environment 
relations, while the latter could deal with spatial autocorrelation structures in the predicted 
distribution [9, 10].  
In this study, acoustic data have been used in a model development, along with remote sensed 
environmental data and metadata, derived from GIS techniques. An important number of abiotic 
variables were grouped, in order to describe potential species distribution–environment 
associations, and to acquire an accurate model for species distribution prediction. GAMs and 
GAMMs were used for the model development and the prediction of species distribution, while GIS 
techniques were used for the mapping of the predicted species distribution. Special issues 
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concerning modelling techniques and acoustic data such as spatial autocorrelation and model 
specificity in contradiction to generality are also discussed. Finally, depending on the application of 
the predicted distribution maps, specific models have been proposed.     
 
2. MATERIALS AND METHODS 
 
2.1 Study area and acoustic data 
The study area (Figure 1) is the Thermaikos Gulf, North Aegean, Northeastern Mediterranean Sea.  

 
Figure 1. Study area and sampling transects 
 
In this study, acoustic fish density data (Sa: area backscattering coefficient) recorded through 
SIMRAD EK500/BI500 system on April/May 1998 in Thermaikos Gulf are used. The 
insonification system, operated at 38 kHz, was calibrated with standard spheres [20]. Species 
identification based on biological sampling as well as concurrent catch data indicated that the 
majority of the target species were Sardina pilchardus (~55%), Engraulis encrasicolus (~25%) and 
Trachurus spp (<10%). Acoustic transects are also shown on Figure 1.  
 
2.2 Remote sensed data 
All the available parameters that could explain the variance of acoustic data were used in GAMs 
development. Two dataset were extracted from each variable. The first represents the sampling 
points across transects and the other represents each point of the grid that covers the sampling area 
in a resolution of 0.01 degree (~1km). These variables as well as their sources are shown in Table 1. 
 
Table 1. Remote sensed data, metadata and their sources 
Data Variable Abbreviation Data type / sensor Archive Source 

Acoustic data Sa Total acoustic integration (Area 
backscattering coefficient Sa per 
ESDU=1nm), 

SIMRAD EK500/BI500 system 
on April/May 1998 in 
Thermaikos Gulf 

Sea Surface Temperature SST Grid / Aqua MODIS German Aerospace Agency 
(DLR) 

Chlorophyll-a 
concentration 

CHL Grid / Aqua MODIS Distributed Active Archive 
Center (NASA) 

Photosynthetically 
Available Radiation 

PAR Grid / SeaWiFS Distributed Active Archive 
Center (NASA) 

Sea Level Anomaly SLA Grid / Merged Jason-1, Envisat, 
ERS-2, GFO, T/P 

AVISO 

Precipitation PRE Grid  Mediterranean Oceanic 
Database (MODB) 

Sea Surface Salinity SSS Grid / CARTON-GIESE SODA and 
CMA BCC GODAS models 

Mercator operational 
oceanography 
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Bathymetry DEP Grid / Processed ERS-1, Geostat and 
historical depth soundings 

Laboratory for Satellite 
Altimetry (NOAA) 

Wind stress & direction WS & WD Grid & cover  Mercator operational 
oceanography 

Coastline   Coast Cover / Digitisation of nautical charts 
and aerial photography 

Hellenic Ministry of 
Environment  

Distance to coast DCoast Grid & cover Extracted from coastline 
Depth slope DEPsl Grid  Extracted from bathymetry grid 
Temperature slope 
(thermal fronts) 

SSTsl Grid  Extracted from SST grid 

Marine Productivity 
Hotspots 

MPH Grid  According to Valavanis et al. 
2004 

Mesoscale thermal fronts  MTF Cover  According to Valavanis et al. 
2005 

Longitude and Latitude 
of stations 

LON,LAT Cover in decimal degrees & meters SIMRAD EK500/BI500 system 
on April/May 1998 in 
Thermaikos Gulf 

Current speed & 
direction 

CURSP & 
CURDR 

Grid & cover / NEMO (OPA9 + 
LIM) 

Mercator operational 
oceanography 

Day-night categorical 
factor 

DN Cover & grid Based on sampling date & hour 

Date DT Cover Based on sampling date 

 
GIS routines (ArcInfo, version 8.0.2, ESRI) were utilized for the conversion of satellite images into 
grids and for the extraction of the environmental values at each sampling point. Before the GAM 
development, an analytic data exploration was performed to acquire a better understanding of the 
data, and to avoid any assumptions’ violation of Generalized Additive Modelling. The basic GAM 
assumptions consist of outliers, extreme values and collinearity between explanatory variables [11]. 
Additionally, the exploration process showed potential relationships between variables and 
prospective variable transformations.      
 
2.3 Model development 
Generalized Additive Model is a generalized linear model with a linear predictor, involving a sum 
of smooth functions of covariates [5, 6]. The main advantage of GAMs over traditional regression 
methods is their capability to model non-linearities using non-parametric smoothers [5, 6]. GAMs 
are selected among several resource selection functions, because of their ability to provide 
biologically interpretable relations between the response and explanatory variables. In addition, 
Generalized Additive Mixed Models are used complementally to GAMs, in order to deal with 
spatial autocorrelation. Spatial autocorrelation on acoustic data could lead to biased models and 
predictions. The total acoustic integration has been used as a response variable, which has been 
transformed with the natural logarithm. The appropriate transformation method has been selected 
by using Quantile-Quantile plots (QQ-plots) [12]. The selection of the GAMs’ smoothing predictors 
followed the method proposed by Wood & Augustin [13], using the ‘mgcv’ library in the R 
statistical software [14]. The degree of smoothing has also been selected based on the observed data 
and the Generalized Cross Validation method [6]. The best-fitted model has been selected by using 
Akaike’s Information Criterion (AIC) [15] and a stepwise forward selection method was applied to 
restrict collinearity among the explanatory variables. The Gaussian family has been selected with 
identity as a link factor. The variables that did not show significant correlation in the exploration 
process have been used as explanatory factors. Depending on the corresponding QQ-plots, some of 
the explanatory variables have also been transformed. The GAMM has been developed based on the 
final GAM model, by the assumption that a specific correlation structure exists between all points 
of the study area. This structure has been modelled by using the Gaussian distribution.  
 
2.4 Model comparisons and predictions 
The ‘predict’ function of mgcv library was applied on final models using the R statistical software 
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[14]. Initially, predictions were acquired from the sampling points by inserting the explanatory 
variables that were used for models’ training. Following that, a new extended dataset containing the 
models’ explanatory variables was used, in order to get a prediction of the entire grid of the 
sampling area, in greater resolution (0,01 degree). The predictions were inserted in Geographic 
Information Systems (GIS), where predicted covers and grids were generated. Pearson’s correlation 
was used to compare models’ outputs with the initial acoustic data from the sampling points. 
 
3. RESULTS AND DISCUSSION 
 
3.1 Model outputs 
The modeling development process ended up with two Generalized Additive Models (GAM8 & 
GAM83) and one Generalized Additive Mixed Model (GAMM21). Table 2 presents the variables 
that compose each model and some quality characteristics.  
 
Table 2. Final models and their characteristics. Level of significance was set at 0.05. The ‘‘:’’ sign 
denotes interaction. Dev. Exp. = Deviance Explained, Res. d.f = residual d.f., 2R a = adjusted R2, 
AIC = Akaike Information Criterion value, P-value (chi-square) = significance values, s = denotes 
smooth function of predictors. 
Model’s 
code 

Explanatory Variables Dev. 
Exp. 

Res. 
d.f. 

2R a  AIC p-value 

GAM8   s(SLA:CHL) + s(CURSP) + s(PAR) 
+ s(SST) 

44,8% 39,786 0.397 494,87 <<0.05 

GAM83 s(SLA:CHL) + s(CURSP) + s(PAR) 
+ s(SST) + as.factor(DN) 

47.9% 42.795 0.424 477.6857 <<0.05 

GAMM21 s(SLA:CHL) + s(CURSP) + s(PAR) 
+ s(SST) + as.factor(DN) 

NA 34.034 0.394 570.2206 <<0.05 

 
The decision of using three models, instead of one, to predict species distribution, was based on 
several model’s characteristics that are related to their predictive efficiency, generality and 
biological interpretability. SLA contributes the most to model’s deviance explained, and CURSP, 
PAR, CHL, SST, DN categorical factor, are following in a descending way. GAM8 is simpler than 
the others and thus more general in its predictive capacity. The difference between GAM8 and 
GAM83 is the DN categorical factor, which is used to explain the variance of the data that 
corresponds to behavioral variation of small pelagic species between day and night. The use of DN 
factor was based on the life history characteristic of small pelagic species that tend to vertically 
migrate during the night and surface during the day [18]. The mixed model was developed under 
the assumption that the sampling data follow a certain correlation structure.  
GAMs and GAMMs are able to identify specific relationships, between the response and the 
explanatory variables [4]. In this case, high acoustic backscattering is related to a combination of 
high CHL and extreme SLA, average values of CURSP, high PAR and low SST values. The above 
environmental conditions are generally found in upwelling areas, where it is well documented that 
small pelagic species are concentrated.    
An overview of models’ characteristics indicates that all models are statistically significant. 
According to AIC (the lower the better), GAM83 overcomes GAM8 and GAMM21 in fitting the 
training data. Additionally, the deviance explained (not available in GAMM21) and the adjusted R2, 
suggested that GAM83 explains higher proportion of the response variance, than the others. In 
conclusion, GAM83 performs better in underlying the relationship between acoustic data and 
environmental factors.       
 
3.2 Predictions in and outside the sampling area 
Each model was trained by using the 442 points of sampled data. In Figure 2, predictions referring 
to acoustic information distribution are presented. Each map includes the output of predicted values 
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based on sampling points (pie charts), and those based on the whole grid (grayscale area). In each 
pie chart, sampling (white) and predicted (black) values of each model are also depicted. White 
patches on the grid correspond to high acoustic information, which indicate high species 
concentration. ArcInfo GIS GRID software version 8.0.2 was used [19] for the generation of 
prediction maps.  
 

 
 
 
 

 
Low                    Medium                      High 

               
Figure 2. Predicted maps and pie charts presenting prediction-Sa portion of sampling points 
 
The grid predictions reveal common distinct areas, where high acoustic information is concentrated, 
although the extents of these areas vary among the models. In GAMM21 and GAM83 models, that 
include the DN factor, an obvious stratification of the predicted values is observed, derived from the 
impact of that factor in the models. Even if DN contributes to the better understanding of the 
acoustic variance, it seems to generate an artifact, when applied to the predicted acoustic 
distribution maps.  
   
3.3 Model evaluation and comparison 
Pearson’s correlation coefficients among the acoustic measurements and the predicted values of the 
sampling points are shown in Table 3, while Table 4 contains the correlations between the grid 
predictions.  
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Table 3. Pearson’s Correlation Coefficients among 
point predictions and Sa 

Correlation Sa GAM8 GAM83 GAMM21 
Sa 1 0.459 0.494 0.442 
GAM8 0.459 1 0.954 0.926 
GAM83 0.494 0.954 1 0.933 
GAMM21 0.442 0.926 0.933 1  

Table 4. Pearson’s Correlation 
Coefficients for among grid predictions 
Correlation GAM8 GAM83 GAMM21 
GAM8 1 0.783 0.689 
GAM83 0.783 1 0.359 
GAMM21 0.689 0.359 1  

 
A visualization of Table 3 is also presented per sampling point in Figure 2, by the use of pie charts. 
The correlation coefficients confirm that the model with the best quality characteristics (AIC, 
deviance explained), correlated more with the initial acoustic data (Sa). On the other hand, 
GAMM21 has the lowest correlation coefficient. With respect to the predicted grids, there is no 
reference variable and thus, the correlations do not demonstrate predicted capacity, but relations 
among the grids. In Table 3 all predicted values are highly correlated (>0.92), although in grid 
predictions (Table 4) there is a significant variance between the correlation coefficient. GAMM21, 
which includes the spatial autocorrelation pattern, differs from GAM83, but not from GAM8. This 
could be an indication of a substantial spatial autocorrelation pattern, inserted by the DN factor and 
modeled in GAMM21. As mentioned above, the DN factor complicates the predicted grids, though 
the correlations between GAM8 and the models including DN are relatively high (0.783 & 0.689). 
The DN factor contributes significantly to GAM83 and GAMM21, increasing the deviance 
explained by these models, however DN is decreasing models’ generality and prediction capacity.  
 
Species distribution maps could be valuable for several decision-making and management purposes 
[4], but their accuracy will always be controversial. Additionally, a prospective variation of any 
environmental factor can be used to identify changes of species distribution. Generally, species 
distribution modelling is only as good as the data used [16]. In this case, three models have been 
developed using similar techniques produced acoustic distributions that identify quite comparable 
distribution maps, but not identical. The choice of the appropriate distribution map depends 
basically on its respective application. Generality, reality and precision are the features that group 
modeling techniques and only two out of the three can be achieved by a model each time [17]. 
Although GAM8 is a general model and could be used in a wide range of spatial and temporal 
predictions, GAM83 is the model that describes more accurately the variance of the acoustic data 
and it is more precise. On the other hand, GAMM21 is the only model that deals with spatial 
autocorrelation issues [9], which insert bias to modeling processes of acoustic data, even if it does 
not perform equally to GAM83.       
 
4. CONCLUSIONS 
 
In this study, remote sensing data and metadata have been modeled with acoustic data using GAMs 
and GAMMs, in order to identify and predict small pelagic fish distribution in Thermaikos Gulf. 
Several GIS routines have also been used for the acquisition of several metadata sets and prediction 
maps. Our results indicate that high acoustic information is related to a combination of high 
Chlorophyll-a, and extreme Sea Level Anomaly, average values of Current Speed, high 
Photosynthetically Available Radiation and low Sea Surface Temperature values. Three models 
have been developed and used for predictions, GAM83 is more precise in the simulation of the data, 
GAM8 is more general (thus suitable for prediction), and GAMM21 incorporates data’s spatial 
autocorrelation. However, the choice of the appropriate model depends on its relative application.    
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