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Abstract 
Accurate modelling and prediction of fish spatial distributions, based on sampled data, provide 
essential information for management purposes and stock monitoring. This study compares current 
and novel modelling techniques, in order to justify their suitability and accuracy on acoustic data. 
Ten different Resource Selection Functions were tested, and Receiver Operation Characteristic and 
Area Under Curve indicated that Boosted Regression Trees and Generalized Additive Models 
appear to fit acoustic data more efficiently. The corresponding probability maps also indicated that 
these functions produce accurate species distribution patterns when used with presence/absence 
data.   
Keywords: models’ comparison; Resource Selection Function; Receiver Operation Characteristic; 
environmental data; acoustic data.

1. INTRODUCTION 

Species ecological and geographic distribution is essential for conservation planning and 
forecasting [1], and for evolutionary determinants of spatial patterns of biodiversity [2]. Several 
approaches have been developed for the identification of species distribution using sampling data. 
Most of these approaches are grouped as Resource Selection Functions (RSF) and are statistical 
models defined to be proportional to the probability of use of a resource unit. Approaches based on 
RSFs have only been applied recently on marine species special characteristics, and several novel 
modelling methods have been proposed [3]. RSFs have been also used to study relationships 
between environmental parameters and species presence [4, 5], identifying essential species habitats 
[6] and forecasting species distribution with corresponding climate changes [7]. Easy access to 
satellite data, covering extended geographic areas, comprise an essential occasion of the wider use 
of RSF.  Presence/absence data type, derived from related sampling strategies, are commonly used 
with RSFs and as Zaniewski et al. [8] argued, presence/absence modelling is more likely to reflect 
the present natural distribution derived from realized niche of the species, whereas presence-only 
methods are more likely to predict potential distributions that more closely resemble the 
fundamental niche.  

In this study, alternative and novel approaches are used to improve model implementation of some 
well established modelling techniques. The RSFs that have been applied include Generalized 
Additive Models (GAMs) and Mixed Models (GAMMs), Maximum Entropy models (MAXENT), 
Boosted Regression Trees (BRTs), Environmental Distance, Genetic Algorithm for Rule-set 
Prediction (GARP), Support Vector Machines (SVMs), Bioclim, Environmental Distance, Envelope 
Score and Multivariate Adaptive Regression Splines (MARS). Each model’s output consists of the 
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final selected model, the probability map of species distribution, the predictive capacity and other 
specific characteristics that describe the “quality” of each approach. Receiver Operation 
Characteristic (ROC) and Area Under Curve (AUC) used mainly for the RSFs comparison. The aim 
of this study is to identify the most accurate method that is able to predict the potential small pelagic 
fish distribution based on presence/absence data in Thermaikos Gulf (NE Mediterranean). 
Additionally, the best fitted function for acoustic and satellite data is inquired. The advantages and 
disadvantages of each technique are discussed.  

2. MATERIALS AND METHODS 

2.1 Study area & data 
The study area (Figure 1) is the Thermaikos Gulf, North Aegean, Northeastern Mediterranean Sea.  
Thermaikos Gulf is a semi-enclosed basin, relatively productive, because of the influence of four 
major rivers (Axios, Aliakmon, Loudias and Gallikos). As a result, bottom relief is smooth due to 
the continuous sediment input. The Thermaikos Gulf forms a wide continental shelf, which extends 
to the south into the 1400 m deep Sporades Basin. Water mass circulation is predominantly cyclonic 
[23]. Aegean water masses entrain the gulf from deeper layers along the eastern coast and move 
counterclockwise towards the gulf of Thessaloniki. Riverine waters usually move to the south along 
the western coast. 

Figure 1. Study area and sampling transects 

Acoustic fish density data (Sa: area backscattering coefficient) recorded through SIMRAD 
EK500/BI500 system on April/May 1998 in Thermaikos Gulf are transformed to presence/absence 
data (Figure. 1). Species identification based on biological sampling as well as concurrent catch 
data indicated that the majority of the target species were Sardina pilchardus (~55%), Engraulis 
encrasicolus (~25%) and Trachurus spp (<10%). The remotely sensed and topographic data that 
have been used for RSFs’ development are presented in Table 1. Only non correlated parameters 
were used that could be able to interfere to small pelagic species distribution, based on their life-
history characteristics. The resolution of each parameter is 0.01 degree (~1km). 

Table 1. Data and their sources
Data Variable Abbreviation Data type / sensor Archive Source 
Acoustic data Sa Total acoustic integration (Area 

backscattering coefficient Sa per 
ESDU=1nm), 

SIMRAD EK500/BI500 system 
on April/May 1998 in 
Thermaikos Gulf 

Sea Surface Temperature SST Grid / Aqua MODIS German Aerospace Agency 
(DLR) 

Chlorophyll-a 
concentration 

CHL Grid / Aqua MODIS Distributed Active Archive 
Center (NASA) 

Photosynthetically PAR Grid / SeaWiFS Distributed Active Archive 
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Available Radiation Center (NASA) 
Sea Level Anomaly SLA Grid / Merged Jason-1, Envisat, 

ERS-2, GFO, T/P 
AVISO 

Bathymetry DEP Grid / Processed ERS-1, Geostat 
and 
historical depth soundings 

Laboratory for Satellite 
Altimetry (NOAA) 

Coastline   Coast Cover / Digitisation of nautical 
charts 
and aerial photography 

Hellenic Ministry of 
Environment  

Distance to coast DCoast Grid & cover Extracted from coastline 
Temperature slope 
(thermal fronts) 

SSTsl Grid  Extracted from SST grid 

Longitude and Latitude 
of stations 

LON, LAT Cover in decimal degrees & meters SIMRAD EK500/BI500 system 
on April/May 1998 in 
Thermaikos Gulf 

Current speed & 
direction 

CURSP & 
CURDR 

Grid & cover / NEMO (OPA9 + 
LIM) 

Mercator operational 
oceanography 

Day-night information DN Cover & grid Based on sampling date & hour 

Depth slope DEPsl Grid  Extracted from bathymetry grid 

2.2 Modelling techniques and models’ development 
The RSF methods that were used are presented in Table 2. The selection of the explanatory 
variables that was used in each model was based on each method’s parameter selection process, or 
parameter contribution information. Models that were developed by the same method were 
compared for their predictive capacity and the one that performed better was selected for that 
method’s comparison. The documentations and software, used for each RSF, are also presented in 
Table 2. All RSFs were developed as proposed by the authors in Table 2. A number of RSFs were 
implemented in more than one way, but only the model with the best predictive capacity has been 
used in the comparison.  
   
Table 2. Resource Selection Functions applied and variables used 
Model Explanatory Variables Software Reference 
Generalized Additive Models, 
GAM 

SST, CHL, PAR, SLA, DEP, 
SSTsl 

R [18], library: mgcv   [9, 10] 

Generalized Additive Mixed 
Models, GAMM 

SST, CHL, PAR, SLA, DEP, 
SSTsl, DN 

R, library: mgcv [9, 10] 

Boosted Regression Trees, 
BRT 

SST, CHL, PAR, SLA, DEP, 
SSTsl, DCoast, DEPsl 

R, library: gbm [3] 

Multivariate Analysis and 
Regression Splines, MARS 

SST, CHL, PAR, SLA, DEP, 
SSTsl, DCoast, DEPsl 

R, library: mda [11] 

Maximum Entropy, 
MAXENT 

SST, CHL, PAR, SLA, DEP, 
SSTsl 

Maxent software for species 
habitat modeling 

[12] 

Support Vector Machines, 
SVM 

SST, CHL, PAR, SLA, DEP, 
SSTsl, DCoast, DEPsl 

openModeller Desktop [13] 

Genetic Algorithm for Rule-
set Prediction, GARP 

SST, CHL, PAR, SLA, DEP, 
SSTsl,  DCoast, DEPsl 

openModeller Desktop [14] 

Environmental Distance, 
DOMAIN 

SST, CHL, PAR, SLA, DEP, 
SSTsl, DCoast, DEPsl 

openModeller Desktop [15] 

Bioclim Envelope Model, 
Bioclim 

SST, CHL, PAR, SLA, DEP, 
SSTsl, DCoast, DEPsl 

openModeller Desktop [16] 

Envelope score SST, CHL, PAR, SLA, DEP, 
SSTsl, DCoast, DEPsl 

openModeller Desktop [16] 

GAM, GAMM and MARS belong to regression approaches, while MAXENT, BRT and SVM are 
developed within the machine learning community. Bioclim and Envelope Score are envelope style 
methods, using environmental data to define bioclimatic envelopes. DOMAIN makes use of a 
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generic algorithm, based on environmental dissimilarity matrices, and finally, GARP is using a 
genetic algorithm that creates ecological niche models for species.    

2.3 Models’ Comparison  
RSFs’ comparison was achieved using the best representative of each function. The method used to 
evaluate RSFs’ predictive capacity, was the Receiver Operating Characteristic (ROC) [17], because 
in contrast to other models’ evaluation methods (Kappa statistics, confusion matrices and 
classification tables [19]), ROC avoids the problem of threshold value selection [20]. ROC-plots 
and the Area Under the Receiver Operating Characteristic curve (AUC) measure the ability of a 
model to discriminate between those sites, where a species is present, and those where it is absent, 
and have been broadly used in the species’ distribution modelling literature [21]. AUC values range 
from 0 to 1, with 1 standing for perfect discrimination, 0.5 for predictive discrimination close to a 
random guess, and values <0.5 indicate performance worse than random [19, 21].  

3. RESULTS AND DISCUSSION 

3.1 Models’ outputs 
The output information of RSFs depends on the function that has been used. Distribution prediction 
maps were generated by all methods utilized, and the AUC was estimated for all models. The 
variables that contributed to each RSF are shown in Table 2. Several models’ characteristics were 
also used to evaluate their predicted ability and their fit to the data. Omission and commission 
errors describe the false predicted absence (underprediction) and false predictive presence 
(overprediction), respectively. Additionally, sensitivity is the proportion of the observed positives 
correctly predicted, and reflects a model's ability to predict a presence, given that a species actually 
occurs at a location. Specificity, on the other hand, is the proportion of the observed negatives 
correctly predicted, and reflects a model's ability to predict an absence, given that a species does not 
actually occur at a location. Both sensitivity and specificity are used for ROC-plots creation. The 
above characteristics and the predicted maps were used for the comparison process. RSFs using 
presence/absence data generate maps illustrating the probability of species’ presence at each point 
on the grid.     

3.2 Comparison results 
The predicted ability of the RSFs, estimated with AUC, is presented in Figure 2. Environmental 
Distance, BRTs, GAMs and SVMs have generated relatively high values, while Bioclim and 
Envelope Score have predicted values almost equal to a random guess.   

AUC

GAM; 0.89
BRT; 0.93

MAXENT; 0.772

SVM; 0.868

GARP; 0.745

Environmental 
Distance; 0.944

Envelope score; 
0.535

GAMM; 0.78

Bioclim; 0.53

MARS; 0.78

0.45

0.55

0.65

0.75

0.85

0.95

Figure 2. RSFs’ comparison using AUC

It is well known that species distribution modelling is only as good as the data used [22]; in addition 
RSF’s performance depends on the number of the samples that are used to train the model. The 
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ranking of RSF’s provides a general idea, regarding the methods’ performance, though it concerns 
the specific dataset and area that have been used in this study. Different data types (e.g. abundance, 
only-presence data, and richness) could produce different RSFs’ ranking [21].  Other studies 
comparing RSFs support the high predicted ability of BRTs and the low one of Bioclim [21]. The 
small AUC difference between MARS and GAMs is also observed by Leathwick et al. [11]. 
Environmental Distance overperformed in this study, in contrast to the study by Elith et al. [21], 
probably due to the fact that this function overfits the training data according to its resulted 
commission index.        

3.3 Best performed RSFs 
BRT, GAM and Environmental Distance probability maps are illustrated in Figure 3. 

Figure 3. Probability distribution maps of small pelagic species occurrence 

The maps in Figure 3 correspond to the three RSFs that generated the highest AUC values. 
Environmental Distance clearly overfits presence data, since high probabilities match sampling 
species occurrence. BTR and GAM produced quite similar maps, indicating common high 
probability areas. However, there seems to be a difference in the range of probabilities among the 
maps, caused by the model’s different fit on training data. Probability maps that were generated by 
the rest of the RSFs offer relatively poor predictions of species’ presence.   
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4. CONCLUSIONS 

Many functions have been developed to model species distribution using presence-only or 
presence/absence data and environmental satellite images as predictors. Depending on data quality, 
number of sampling records, extend of area and data type, these functions perform differently. 
However, there are approaches like BRTs and GAMs that usually generate more accurate 
distribution maps, compared to other methods. In this study, ten RSFs were evaluated using AUC 
and the above mentioned methods overachieved the comparison process and the probability map 
justification. Environmental Distance also had high AUC value, though other model characteristics 
and the corresponding probability map indicated that this method overfitted the training data. We 
propose GAMs and BRTs to be the most appropriate approaches to handle acoustic 
presence/absence data and to provide accurate distribution probability maps; however different 
study cases might require more analytical method selection. 
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