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Time series analysis and forecasting techniques applied
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Abstract

Time series analysis techniques (ARIMA models), artificial neural networks (ANNs) and Bayesian dynamic models were used to forecast
annual loliginid and ommastrephid landings recorded from the most important fishing ports in the Northern Aegean Sea (1984–1999). The
techniques were evaluated based on their efficiency to forecast and their ability to utilise auxiliary environmental information. Applying a
“stepwise modelling” technique, namely by adding stepwise predictors and comparing the quality of fit, certain inferences concerning the
importance of the predictors were made.
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The ARIMA models predicted the test data very precisely (high R ), especially if the target time series contained a strong autoregressive
haracter, after they were first differenced to obtain stationarity (R2 > 0.96). The disadvantage of the ARIMA, as with most statistical models,
s their assumption that the relationships and system parameters remain the same across the observation and forecasting periods.

The influence of temperature on catches was mainly investigated by applying neural models, which predicted the monthly landings with
igh precision (R2 = 0.89), even when incorporating in the model exclusively monthly SST descriptors. Similarly, ANN models of annual
andings containing monthly mean temperatures provided high precision (R2 = 0.87) and valuable inference concerning the possible effect of
he SST in certain months.

Bayesian dynamic models also provided a high precision (R2 = 0.96). They combined the information of both environmental and landing
ime series, namely the monthly mean temperatures and the monthly seasonality of the landings. The impact factors estimated from the model
ave the form of time series representing the temperature effect.

The results reveal that both the monthly and the annual landings can be predicted and that the Bayesian model is the best performer overall,
haracterised by a higher number of stable forecasts, and forecasts with higher precision and accuracy, than the other methods. It is evident,
rom application of the “stepwise modelling” technique, that the incorporation of temperature descriptors can significantly improve the model
erformance.

2006 Elsevier B.V. All rights reserved.
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1. Introduction

In fisheries management, as well as in other cases,
forecasting strategies are based on the development of
either descriptive or explanatory models. The first cate-
gory, usually a synonym of “black box” models (Haddon,
2001), is a necessary approach, whenever important infor-
mation for the construction of explanatory models fails. In
fisheries, explanatory models often obey certain assump-
tions (Fox, 1970; Schaefer, 1984) or are susceptible to
the completeness and the quality of the data (Hilborn
and Walters, 1992). Therefore, and due to their parsi-
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monious character, descriptive models gained in popular-
ity at least for forecasting purposes (Cohen and Stone,
1987). In addition to the forecasting character, the mul-
tivariate descriptive models have the advantage that by
“stepwise modelling”—namely by adding stepwise pre-
dictors and comparing the quality of fit, certain infer-
ences concerning the importance of the predictors can be
made.

Descriptive models used to predict and analyse time
series data attempt to decompose up the dependent variable
into four main components. Simple time trends, periodic
fluctuations, predictors’ effect and the error component. A
common realisation of this approach is the development
of the multivariate ARIMA models (Box and Jenkins,
1976).

In the present work, three modelling and forecast-
ing techniques were evaluated on the basis of their
efficiency to forecast and their ability to utilise aux-
iliary environmental information: ARIMA models,
artificial neural networks (ANNs) and dynamic models
(DMs).

ARIMA and ANNs have been fitted to the data using
Frequentist techniques (e.g. maximum likelihood technique)
while the dynamic models have been fitted using the Bayesian
estimation technique.

In particular, neural networks are very sophisticated non-
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Fig. 1. Northern Aegean Sea. The map shows the three most important
fishing ports in the area. The geographic rectangles were used for the analysis
of the SST data.

2. Materials and methods

2.1. Study area, source of data and pre-processing

More than 50% of the cephalopod production in Greek
Seas is concentrated in the North Aegean Sea (Koutsoubas
et al., 1999). The present statistical analysis is based on the
monthly landings from the three most important fishing ports
of this area, namely from Thessaloniki, Kavala and Alexan-
droupolis (Fig. 1). The landing data have been provided by
the Fishing Development Corporation in Greece (ETANAL
S.A).

Daily satellite images, provided from the National
Oceanic and Atmospheric Administration (NOAA), were
transformed into Sea Surface Temperature (SST) in Celsius
by using GIS tools. The area under study was divided in sta-
tistical rectangles (1◦N × 1/3◦E) and in each rectangle the
spatially averaged temperature means, minima, maxima, and
the spatio-temporal standard deviation in each month were
estimated. Finally, the same descriptors were estimated for
each landing port, weighted according to the number of valid
pixels per image (Valavanis et al., 2002).

All data sets, landings and SST descriptors cover the
period between the years 1984 and 1999. The time series
were tested for stationarity, evaluating arithmetic mean, vari-
ance, and autocorrelation through time. Time series used in
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inear techniques and have been chosen from other non-linear
ools, because of their capability to model extremely complex
unctions.

The models have been applied to the same data set,
amely the landings of long-finned squids (Loliginidae)
nd short-finned squids (Ommastrephidae), recorded in the
orthern part of the Aegean Sea during the 1984–1999 time
eriod. Previous attempts to model cephalopod landings
n Greece (Stergiou, 1987, 1989; Stergiou and Christou,
996; Georgakarakos et al., 2002) showed that sea tem-
erature could be an important environmental predictor.
he aim of the present work is to investigate further

he environmental impact on such biological resources,
ike the cephalopods in Greece, where fishing effort and
iological data are lacking or limited, rendering the devel-
pment of stochastic, non-linear and dynamic models more
ttractive.

Readers interested in the biological and geographic
haracteristics of the target species may refer to previous
ontributions; about a general aspect of the invertebrates
Caddy, 1989), their distribution in the Mediterranean and
astern Atlantic (Roper et al., 1984) or the Aegean Sea
D’onghia et al., 1996; Koutsoubas et al., 1999; Arvanitidis
t al., 2002; Moreno et al., 2002). A comparison of cephalo-
od landings in the Northeast Atlantic and Mediterranean,
ver the period 1980–1992, supported the hypothesis of
large-scale climatic influence on the cephalopod abun-

ance (Pierce et al., 1995). Additionally references for the
evelopment of fisheries forecasting models are included in
addy (1989).
he ARIMA models were first differenced until they were
tationary in the mean, and log transformed to stabilise the
ariance. For the development of the other models, the land-
ngs were previously log transformed.

The statistical procedures mentioned in the present study
ere implemented, if not otherwise mentioned, using the
PSS for Windows software, SPSS Trends routines (SPSS
nc., 2002). Sample autocorrelations (ACF) served also as a
easure of the periodicity in the time series and were plotted

ystematic for both landings and environmental descriptors.
easonal dependency was proved by comparing the results of

he Partial Autocorrelation Function (PACF), which consid-
rably reduces the dependence on the intermediate elements,
ithin the lag, and the results of the ordinary ACF (Box and

enkins, 1976; see also McDowall et al., 1980).
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2.2. Seasonal decomposition procedure

The goal of the seasonal decomposition procedure was to
extract a seasonal component and a combined trend—cycle
component from the observed signal, assuming the residual as
the “error” component. In the present study, the seasonality of
the time series was represented by the 12 months periodicity.
The following components or combinations of them were
estimated by the SPSS Trend routines:

• SAF: seasonal adjustment factor, which contains the sea-
sonality of the time series,

• SAS: seasonal adjusted series (the original series minus
the seasonality),

• STC: de-seasoned trend and cycle (the trend component
plus the cycle) and

• ERR: the residuals.

The residuals were tested to ensure pure randomness
(white noise properties) and that they were not correlated to
other potential predictors. The other generated components
were further analysed, checking their distributions and
their auto- and cross-correlograms. The characteristics of
the STCs, which include the trend and the non-seasonal
periodicity, were also investigated for autocorrelation,
trends, and possible correlation with other parameters.
Finally, all these parameters were crosschecked as potential
A
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Finally, the following results were summarised: the
parameter estimates, standard errors, estimate of resid-
ual variance, standard error of the estimate, log likeli-
hood, Akaike’s Information Criterion (AIC), and Schwartz’s
Bayesian Criterion (SBC). The minimising of SBC and AIC
were used, taking into account both how well the model fitted
the observed series, and the number of parameters used in the
fit (SPSS manual, Trends, Release 6.0).

These procedures were applied separately to the land-
ings and the SST time series, in a univariate analytical
approach. After the estimation of their parameters, new mul-
tivariate ARIMA models were developed, taking as covari-
ates the SST parameters (mean, minimum and maximum
values) as well as STC and the residuals of the seasonal
decomposition.

Finally, the multivariate model was compared to the uni-
variate one in order to test the significance of the covariate
contribution.

A more detailed description of the development proce-
dure can be found in Georgakarakos et al. (2002) included.
In all cases, if not mentioned otherwise, the data from
1984 to 1998 were used for evaluating (fitting) the model,
while the data of the last 12 months (1998–1999) were used
for testing the forecasting performance of the established
models.
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RIMA predictors.

.3. Development of models

.3.1. ARIMA models
ARIMA models were developed following the standard

hree-step procedure described in Box and Jenkins (1976),
amely model identification, parameter estimation and finally
he diagnosis of the simulation and its verification (see also,

akridakis, 1990).
The general form of the model can be summarised by the

ommonly used three types of parameters: the autoregressive
arameters (p), differencing passes (d), and moving average
arameters (q). In the standard notation “p–d–q”, a model
escribed as (0, 1, 2) means that it contains 0 (zero) autore-
ressive (p) parameters and 2 moving average (q) parameters
hich were computed for the series after it was differenced
nce (d = 1). For the seasonal ARIMA process the required
arameters sp, sd and sq are also determined interpreting the
esults of the corresponding ACF and PACF. The identifica-
ion of the tentative model starts with the estimation of the
easonal model and afterwards with the analysis of its resid-
als. This can provide a clearer view of the futures of the
on-seasonal model. In a well-identified seasonal model, its
esiduals show the non-seasonal portion of it.

The parameters of the tentative model were estimated by
pplying maximum-likelihood techniques. The derived resid-
als should be without any pattern. Therefore, the residuals of
ll presented models were tested to be normal distributed and
on-autocorrelated (non-significant Box–Ljung Q statistic).
.3.2. Neural network development
Artificial neural networks (ANNs) comprise algorithms

or mapping the input vector (predictors) to an output vector
responses), through processing elements called ‘neurones’,
ia a training process. The most common type of ANNs is a
hree-layer backpropagation network, which consists of three
asic groups of neurons:

The input neurons collect the external information and
send it to the hidden neurons in the middle layer.
The hidden neurons accumulate the previous signals,
adjusting each input by certain weights and applying cer-
tain threshold functions.
The output neurons accumulate in a second step the input
from the hidden neurons, applying again a set of weight
parameters and threshold functions.

A three-layer backpropagation network, which includes
input, j hidden and k output neurons, can be rep-

esented in mathematics by the following equation
Ripley, 1996):

k = fk

⎛
⎝ak +

∑
j→k

wjkfj

⎛
⎝aj +

∑
i→j

wijxi

⎞
⎠

⎞
⎠ (1)

here yk is the neural output of the k neuron, fk and fj are
ctivation or threshold functions.

The intercepts ak and aj are known as biases and wjk or
ij are weights which multiply the signals travelling from j

o k or from i to j correspondingly.
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The activation functions are used to introduce non-
linearity at the hidden layer, and are often taken to be

sigmoid σ(z) = 1

1 + e−z
(2a)

or

logistic fh(x) = ex

1 + ex
(2b)

Standard three-layer backpropagation networks were cho-
sen for modelling the monthly landings, due to their good
generalisation efficiency. All ANNs were constructed and
supervised following the same procedures and initial settings,
in order to have comparable results by their application. The
networks were developed in the NeuroShell 2 environment,
provided by the Ward Systems Group.

The monthly landings of the last year have been selected
for building the test set, leaving the remainder as the training
set. After each complete learning pass through the training
data, the software automatically predicts equivalent values to
the test data and estimates the error factor of the prediction.
This comparison controls the training process and avoids net-
work overtraining. Once, the computed error factor ceases to
improve, the constructed network can be applied to the total
data or only to the test data set.
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In accordance, for a single observation the above equation
is:

Yt = x′
tθt + vt (3b)

where x is a column vector and x′ is its transpose.
Consequently, the univariate linear DM that describes the

monthly landings can be written:

landingst = F ′
t θt + vt, vt ∼ N[0, Vt] (4)

θt = Gtθt + wt, wt ∼ N[0, Wt] (5)

where landingst are the observed landings value at time t, Ft a
vector of known constants (the regression vector), θt denotes
the vector of model state parameters, vt a stochastic error term
having a normal distribution with zero mean and variance Vt,
Gt a matrix of known coefficients that defines the systematic
evolution of the state vector across time and wt is a stochastic
error term having a normal distribution with zero mean and
covariance matrix Wt.

The prior information on the state vector for time t + 1 is
represented by a normal distribution with mean = at + 1 and
covariance Rt + 1,

θt+1|Dt ∼ N[at+1, Rt+1] (6)

where Dt denotes the state of knowledge at time t.
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The performance of the ANNs was measured by estimat-
ng the R2-adjusted coefficient of determination, an indicator
sually applied to multiple regression analysis (Zar, 1999). It
ompares the accuracy of the model to the accuracy of a triv-
al benchmark model wherein the prediction is just the mean
f all of the samples. It is adjusted for the different degrees of
reedom or amounts of replication in the data set. Note that it
s different from the squared multiple correlation coefficient.

detailed description of the method is contained in Twomey
nd Smith (1996).

.3.3. Bayesian dynamic system analysis
Forecasting in a Bayesian approach is the quantification

f the probability distribution, which describes the nature of
he uncertainty, taking into account existing knowledge. The
ynamic models (DMs) were based on sequential Bayesian
earning and forecasting procedures across the whole time
pace, according to the well-known relation between prior
nd posterior information:

osterior ∼ prior × likelihood

Using the standard notation of a linear DM (West and
arrison, 1989) the vector of response variables Y is related

o the regressor matrix X as:

= Xθ + v (3a)

here θ is the vector of the unknown parameters, which
hould be estimated and v is the vector of the uncorrelated
tochastic errors.
In order to forecast landings in the next time period
landingst + 1) a linear combination of the normally dis-
ributed variables θt+1|Dt and the vt+1 is used. The forecast

ean will be equal to:

[Yt+1|Dt] = E{F ′
t θt+1 + vt+1|Dt} = E{F ′

t θt+1|Dt}
+ E{vt+1|Dt} = F ′

t E{θt+1|Dt} + E{vt+1}
= F ′

t+1at+1 (7)

hile the forecast variance will be equal to:

[Yt+1|Dt] = V {F ′
t+1θt+1 + vt+1|Dt} = V {F ′

t+1θt+1|Dt}
+ V {vt+1|Dt} = F ′

t+1V {θt+1|Dt}Ft+1

+ V {vt+1} = F ′
t+1Rt+1Ft+1 + Vt+1 (8)

In the previously described equations, it is assumed
hat the stochastic time series are not autocorrelated or
ross-correlated. Data sets providing models with correlated
tochastic terms can be transformed in order to remove the
orrelation (Box and Jenkins, 1976). Furthermore, we assume
hat the system under study is invariant and therefore Gt, the

atrix of known coefficients that defines the systematic evo-
ution of the state vector across time is constant (Gt ≡ G).

In addition, both the observation variance and the sys-
em covariances are unknown and in the Bayesian approach
hould be specified as probability distributions, which will be
pdated with new observations according to the Bayes The-
rem. The same is valid for any other prior, as for instance
he priors describing the seasonal components. Priors either
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are specified by the BATS user through intervention, as a
pure subjective hypothesis, or are the result from the previ-
ous period’s posterior. This procedure, which assigns some
starting values to the model parameters, is called reference
analysis. It calculates one-step-ahead point forecasts, based
on the assumed parameter values deemed most appropriate
for one-step forecasts.

Finally, the resulted residuals should be tested and espe-
cially forecast residuals are tested on-line during monitoring
to ensure that they are not autocorrelated.

A detailed description of the method is contained in Box
and Tiao (1973) and West and Harrison (1989). Reference to
the applied software for the Bayesian algorithm in DMs can
be found in Pole and West (1990).

2.3.4. Step by step DM development
For the time series of landings, we can split up the response

variable into three components: an underlying level indepen-
dent from the regressor (levelt), a second part determined
by the regressor and a third component, that represents the
stochastic error. The Observation Equation for the model that
describes the landings is written:

landingst = levelt + βtxt + vt, vt ∼ N[0, V ] (9)

where xt is the regressor value at time t, vt is a stochastic
error at time t having a normal distribution with zero mean
and variance V.

The two uncertain parameters levelt and βt may be
expressed by the two system equations, which have the form
of a simple random walk, as:

levelt = levelt−1 + �levelt , �levelt N[0, W1] (10)

βt = βt−1 + �βt, �βt ∼ N[0, W2] (11)

In standard notation, the above observation and system
equations should be written:

Yt = F ′
t θt + vt, vt ∼ N[0, V ] (12)

θt = Gtθt−1 + wt, wt ∼ N[0, W] (13)

where Yt is the time series of the observed monthly landings,
Ft a vector of known constants (the regression vector), θt

denotes the vector of model state parameters (level, β), vt

the observation stochastic error normal distributed with zero
mean and variance V, Gt a matrix of known coefficients that
defines the systematic evolution of the state vector across
time and wt is the system stochastic error normal distributed
with zero mean and covariance matrix W.

F
E

ig. 2. Time series of loliginid (above) and ommastrephid (below) monthly land
TANAL S.A).
ings (Kg) for the major three fishing ports of North Aegean Sea (source:
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All models were started from an initial steady state model,
which was developed according to the forms:

landings = levelt + vt, vt ∼ N(0, Vt) (14)

levelt = levelt−1 + wt, wt ∼ N(0, Wt) (15)

This initial model assumes that the mean remains roughly
constant over short time periods, shifting by increments obey-
ing given distributions, with the observation variance (Vt) and
the system variance (Wt). The starting conditions for the anal-
ysis are based on the default value provided by the reference
analysis.

In a next step, a series of models was developed by adding
certain explanatory environmental variables (SST descrip-
tors) as regressors and testing the performance against the
steady state models. The new models include as dynamic
parameter certain SST descriptors according to the form:

landings = levelt + btSSTt + vt (16)

where

bt = bt−1 + w′
t , w′

t ∼ N(0, W ′
t ) (17)

Note that by adding regression components, the level is
effectively playing the role of a dynamic regression inter-
cept, while the bt is a varying slope of the regression (Eq.
(7)). Bearing this interpretation in mind there is a strong argu-
ment for the distribution of the level to be quite close to the
regression distribution.

At the end of the development phase all models were
expanded by incorporating the monthly seasonality, namely
by adding 12 seasonal factors, 1 for each month.

The performance of all models was tested by three tools,
by estimating the coefficient of determination R2 between
the predicted versus the observed values, by analysing the
statistics of their residuals and finally by cross-validating their
predictions with unused, during the modelling procedure, test
data.

F
p

ig. 3. Seasonal adjusted factors (SAFs) after the seasonal decomposition of Loligi
orts of the northern Aegean Sea.
nids (above) and Ommastrephids (below) series, for the three major fishing
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3. Results

3.1. Analysis based on classical time series models

Monthly loliginid and ommastrephid landings in all fish-
ing ports in Greece oscillate with an annual periodicity, gen-
erally showing their minima during the summer time (Fig. 2).
Several temperature spatio-temporal estimates (mean, mini-
mum and maximum of SST) show a strong seasonal period-
icity, in step with the landings, which may complicate any
approach to deconvolute interactions between the environ-
mental and fishery data. As it was demonstrated in a previous
investigation, seasonality did not increase with the level of
the landings and additive models can be used successfully for
standard Seasonal Decomposition analysis (Georgakarakos
et al., 2002).

Time series of landings by species group and fishing ports
were pre-processed calculating the first-order differenced
seasonal transformed series, in order to fulfil the stationar-
ity requirements.

3.1.1. Seasonal decomposition
The time series of loliginid and ommastrephid monthly

landings of the target areas were decomposed into a seasonal
factor, a cycle component, a combined trend and the remain-
ing “error”. The estimated adjustment factor (SAF) in Fig. 3
portrays the well-known pattern of the rapidly decreasing
landings during the summer time. Loliginid landings showed
less variability among the different areas compared to the
ommastrephid data. The STC component, which contains
the trend component plus the cycle, provided indications for
trends longer than 12 months, as it is demonstrated, for exam-
ple, in the ACF plots of the loliginid landings in Thessaloniki
(Fig. 4).

3.1.2. ARIMA models
The ARIMA models cover the period 1984–1999, while

the last 12 months (July 1998 to June 1999) were kept out
of fitting and used only for the cross-validation of the fore-
casting. The model development proceeded by the following
steps:

F
C
9

ig. 4. Autocorrelation function (ACF) of the trend-cycle component (STC) after s
ross-correlation function (CCF) between SST (STC) and landings (STC) (below).
5% confidence limits.
easonal decomposition of the Thessaloniki landings of Loliginids (above).
In addition to the correlation coefficients, the ACF and CCF plots show the
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The ACF and PACF of the natural log transformed series
showed large values at lags 12, 24 and 36. The slowness with
which values at those seasonal lags declined confirmed that
seasonal differencing was required to achieve a stationary
mean.

The seasonal ACFs and PACFs smoothed out the rapid
seasonal fluctuations, while the ACFs still showed significant
correlation, with a single seasonal spike emerging at lag 12

for loliginids and ommastrephids. The PACFs showed a large
spike at lag 12 and a smaller one at lag 24.

The pattern ‘one spike in ACF, rapidly declining PACF’
was interpreted as a MA(1) (Moving Average of order 1)
process, here a seasonal MA(1) process, since the pattern
appeared at the seasonal lags. The tentative seasonal model
was (0, 1, 1) since the data were from seasonal differenced
series.

Table 1
Coefficients* and summary statistics of ARIMA modelling of the loliginid and ommastrephid landings (natural log transformed) at the three ports of Northern
Aegean Sea

Species Loliginids Ommastrephids

Port Thessaloniki Kavala Alex/polis Thessaloniki Kavala Alex/polis

A. Univariate ARIMA
ARIMA model: (1–0–1) (1–0–1) (1–0–1) (1–1–1) (1–0–1) (1–0–1)

(0–1–1)12 (0–1–1)12 (0–1–1)12 (0–1–1)12 (0–1–1)12 (0–1–1)12

Number of residuals 162 162 162 161 162 57
Standard error 0.646 0.656 0.985 1.009 1.086 1.023

B (coefficient)
AR1 0.6502 0.6044 0.5915 0.3161 0.75105 0.25717
MA1 0.2626 0.1737 0.1146 0.9749 0.36091 −0.58512
SMA1 0.5978 0.7938 0.4506 0.9044 0.77247 0.26203

Standard error of B
AR1 0.1280 0.1290 0.1241 0.0753 0.09637 0.18566
MA1 0.1620 0.1582 0.1562 0.0420 0.13499 0.15156
SMA1 0.0703 0.0696 0.0771 0.0997 0.06978 0.15633

0.0
0.0
0.0

0.9
0.9

C

B

*

Approximated probability
AR1 0.0000 0.0000
MA1 0.0107 0.0274
SMA1 0.0000 0.0000

Adjusted R2

Fit 0.9912 0.9890
Forecast 0.9985 0.9961
ovariate STC of SST-max STC of SST-min S

. Multivariate ARIMA
Number of residuals 162 162 1
Standard error 0.631 0.652

B (coefficient)
AR1 0.6132 0.5328
MA1 0.2687 0.1017
SMA1 0.6313 0.8199
Covariate 0.3260 0.1073

Standard error of B
AR1 0.1498 0.1440
MA1 0.1831 0.1678
SMA1 0.0685 0.0698
Covariate 0.1128 0.0881

Approximated probability
AR1 0.0001 0.0003
MA1 0.0444 0.0545
SMA1 0.0000 0.0000
Covariate 0.0044 0.1103

Significance level of covariate 0.9956 0.8897

Adjusted R2

Fit 0.9916 0.9890
Forecast 0.9978 0.9952

AR1: autoregressive coefficient of order 1, MA1: moving average coefficient of or
000 0.0000 0.00000 0.01717
464 0.0000 0.00829 0.00030
000 0.0000 0.00000 0.09949

636 0.9838 0.9739 0.9721
798 0.9934 0.9902 0.9684
TC of SST-max SAS of SST-min STC of SST-max SST-max

62 161 162 57
0.970 0.939 1.075 0.996

0.4953 0.2970 0.7825 0.3358
0.0331 0.9738 0.4035 -0.5791
0.4940 0.8892 0.7800 0.1242
0.4929 -0.3034 -0.3621 -0.2398

0.1467 0.0767 0.0886 0.1770
0.1730 0.0486 0.1284 0.1525
0.0765 0.0908 0.0696 0.1635
0.1963 0.0896 0.1815 0.1007

0.0009 0.0002 0.0000 0.0633
0.0486 0.0000 0.0020 0.0004
0.0000 0.0000 0.0000 0.0510
0.0130 0.0009 0.0477 0.0209
0.9870 0.9991 0.9523 0.9791

0.9649 0.9843 0.9745 0.9745
0.9833 0.9910 0.9897 0.9634

der 1, SMA1: seasonal moving average coefficient of order 1.
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After the coefficients of the seasonal model had been esti-
mated, the ACF and PACF of their residuals were examined.
Their ACFs started large and then died out, while their PACFs
also died out somewhat more quickly. The non-seasonal
model could therefore be ARIMA (1, 0, 1) in all cases except
for ommastrephids of Thessaloniki where the non-seasonal
model of ARIMA (1, 1, 1) performed best.

The combined tentative models incorporating both non-
seasonal and seasonal parameters in the ARIMA(p–d–q) for-
mat were ARIMA(1, 0, 1)(0, 1, 1)12 or ARIMA(1, 1, 1) (0,
1, 1)12. The coefficients and the summary statistics of these
univariate ARIMA models are given in Table 1.

In order to test whether the SST descriptors could improve
the model performance multivariate ARIMA models were
developed, incorporating certain SST parameters (mean,
minimum and maximum values as well as STC and the resid-
uals of their seasonal decomposition). The covariate that best
improved each of the initial (univariate) ARIMA model in
terms of reduction of the standard error and the residual vari-
ance is presented in Table 1. The STC and the SAS of the
maximum value of SST gave the best results for loliginids in
all fishing ports. For ommastrephids, different parameters of
SST (min, max and mean) for each port model gave the best
results.

The observed values (transformed with natural logarithm)
along with their model fit and confidence intervals were plot-
ted (as an example, the models of the Thessaloniki fishing
port are shown in Fig. 5). The ACF and PACF of the model
residuals (not shown) did not provide any significant pattern;
i.e. the residuals had a stochastic character.

The observed values of the forecasting period 1998–1999
fall within the confidence intervals of the ARIMA models.

The predicted values, for both the fit and forecast peri-
ods, were compared to the observed ones and the estimated
adjusted R2 varied between 0.96 and 0.99 (Table 1).

3.2. Time series analysis via artificial neural networks

3.2.1. Stepwise modelling the monthly landings by
applying environmental predictors

Standard backpropagation ANNs were applied for mod-
elling the monthly landings of the target species using differ-
ent combinations of regressors. Firstly, simple ANNs incor-
porating as inputs only the year and the month of the observed
landings were developed, in order to absorb any trend and
seasonality of the time series, not included in the “environ-
mental variables”. The incorporation of a “dummy” variable
(e.g. year) was used as a tool to absorb long-term variability.

F
T
s

ig. 5. ARIMA fitted models with 95% upper (UCL) and lower (LCL) confide
hessaloniki area (above: Loliginids, ARIMA(1–0–1)(0–1–1)12 and below: Omma
tart of the forecasting period (July 1998).
nce levels. Monthly landings, natural logarithmic transformed, from the
strephids, ARIMA(1–1–1)(0–1–1)12). The dotted vertical line indicates the
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In the next step the ANN models were extended by adding
different combinations of the spatio-temporal SST descrip-
tors, such as the average, the minimum, maximum and the
spatio-temporal deviation of SST acquired from the same
geographic area as the landings data.

All ANNs were based on the same architecture and were
trained under the same conditions. The goal of the training
was not to achieve the best fit of the trained data set, but
to quantify the contribution of the regressors to the predic-
tion performance of the neural model. The performance was
measured by comparing the neural output to the observed val-
ues and estimating the adjusted coefficient of determination
(R2). The estimated coefficients, for the loliginid and ommas-
trephid species in the main ports of the Northern Aegean Sea
are summarised in Table 2. The R2 estimates based only on the
year and month variables, varied from 0.24 to 0.67 and were
used as the reference (R2

0) for testing if the incorporation of
the SST descriptors could increase the model predictability.
Each adjusted coefficients R2

j estimated by a new combi-
nation of added environmental descriptors were compared
to the reference R2

0, where the H0 hypothesis was that both
coefficients were equal (Rj = R0). The H0 was rejected by dif-
ferent levels of significance, namely by *p < 0.05, **p < 0.01
or ***p < 0.001.

The same stepwise modelling procedure was repeated in
order to compare the effect of the SST descriptors to those
o
w
(
c

the R2 values and therefore the H0-hypothesis of the R2

equality was rejected. The ommastrephid landings of Kavala,
however, did not provide significant improvements of the
coefficient of determination R2. Also shifting backwards the
SST data by 12 months did not significantly improve the
model. The only case with a significant improvement in R2

after backward shifting was the Tmin–Tmax model of the lolig-
inid landings in Kavala (p = 0.011).

3.2.2. The monthly pattern for different SST conditions
The seasonal pattern of the landings, identified by sim-

ply plotting the data or by analysing the Seasonal Adjusted
factors of the ARIMA models (Fig. 3), seems to vary by
changing the SST descriptors. Moreover, the ANN models
have predicted similar patterns and incorporating certain SST
regressors were able to demonstrate the effect of temperature
on the monthly patterns. In general all models predicted fewer
landings by an increase of the minimum observed SST. It is
noticeable, that loliginid landings (Fig. 6a and c) behaved
differently from the ommastrephid landings (Fig. 6b and d).
The former showed a higher sensitivity to the environmen-
tal change during the first months of the year (Thessaloniki)
or later during the middle months (Kavala). On the contrary,
ommastrephid landings showed much less sensitivity to the
SST variations, while in the case of the Kavala data set the
l

o
r
i

T
P

T

Lag =

T
0.59
0.78**

0.74*

0.73*

K
0.58
0.85**

0.84**

0.83**

A
0.64
0.76*

0.77*

0.78**

N(lag =

T ation (R
o m the s

*

f the previous 12 months. The environmental descriptors
ere used without (Lag = 0) or with a backward time shift

Lag = 12). In the most analysed cases the addition of the
oncurrent or shifted SST regressors increased significantly

able 2
rediction of monthly landings using different regressors

ime shift in SST data Species

Loliginids

Lag = 0

hessaloniki
Year, month 0.38
Year, month, Tmin–Tdiff 0.83***

Year, month, Tmin–Tmax 0.69***

Year, month, mean T 0.73***

avala
Year, month 0.67
Year, month, Tmin–Tdiff 0.85***

Year, month, Tmin–Tmax 0.74
Year, month, mean T 0.89***

lexandroupolis
Year, month 0.53
Year, month, Tmin–Tdiff 0.76***

Year, month, Tmin–Tmax 0.81***

Year, month, mean T 0.76***

N(lag = 0) = 188

he models are based on trained ANNs. Adjusted coefficients of determin
bserved values. The environmental descriptors used in the models were fro
* p < 0.05.

** p < 0.01.
**
 p < 0.001.
andings were relatively stable for the different months.
The interpretation of the landing changes in relation to the

bserved monthly SST, in Fig. 6, can be facilitated by refer-
ing to the monthly minima and maxima of SST summarised
n Table 3.

Ommastrephids

12 Lag = 0 Lag = 12

0.28 0.32
* 0.73*** 0.73***

0.75*** 0.75***

0.76*** 0.78***

0.24 0.26
* 0.31 0.21
* 0.28 0.38
* 0.31 0.28

12) = 175 N(lag = 0) = 188 N(lag = 12) = 175

2) were used as indicators for the “Goodness of fit” of the predicted vs.
ame month (Lag = 0) or from 1 year before (Lag = 12).
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Fig. 6. Pattern of monthly landings by different Tmin (minimum observed SST). In general, the increase of the Tmin (y-axis) coincides with lower landings
(z-axis). Significant differences were observed among the patterns of the different areas and species (see details in text).

Table 3
Monthly minimum and maximum SST observed in the three main fishing ports

1 2 3 4 5 6 7 8 9 10 11 12

Thessaloniki
Minimum 12.83 12.36 11.80 12.35 15.55 18.82 20.70 21.41 20.40 18.05 14.56 13.32
Maximum 15.95 15.42 15.11 16.00 17.50 21.22 22.83 23.73 22.75 21.16 18.91 17.09

Kavala
Minimum 12.62 12.02 11.11 11.98 15.53 18.86 20.68 21.41 19.12 17.26 14.52 13.33
Maximum 16.18 15.43 15.17 16.02 17.51 20.84 22.81 23.20 22.44 21.26 19.12 17.16

Alexandroupolis
Minimum 13.19 12.39 11.80 12.18 15.21 18.90 20.61 21.33 18.17 17.01 14.96 13.68
Maximum 16.27 15.44 15.19 16.03 17.52 20.67 22.81 23.22 22.44 21.32 19.21 17.22
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Fig. 7. Models based on trained Backpropagation ANNs. Observed vs. predicted monthly landings in Thessaloniki. Estimated R2 for forecasting cases (July
1998–June 1999). Above: Loliginids (R2 = 0.834). Below: Ommastrephids (R2 = 0.849).

3.2.3. Prediction of the monthly landings
Based on the experience of the previous results new back-

propagation ANNs were developed in order to predict the
landings utilising as regressors the monthly SST values of
the previous 12 months. The modelled and predicted land-
ings of the loliginid and ommastrephid species are displayed
in Fig. 7. Summary results of regression statistics between the
predicted and the observed landings for the two species are
contained in Table 4. The forecasting performance of the time
series of both species was similar (R2 = 0.84), not however
the Relative Contribution Factors, namely the contribution to
the model of each monthly mean temperature from the pre-

Table 4
Prediction of monthly landings using as regressors the SSTs of the previous
12 months

Summary results Loliginids Ommastrephids

Correlation coefficient r 0.9226 0.9287
R squared: 0.8443 0.8432
r squared 0.8511 0.8625
Mean squared error 0.338 0.567
Mean absolute error 0.457 0.535
Min. absolute error 0 0.002
Max. absolute error 1.84 2.353

Summary results of the final ANNs taking into account the total data set i.e.
both training and testing (forecasting) cases.

F ls. Monthly landings in Thessaloniki. Left: loliginids, Right: ommastrephids. Each
b hs before (0 ≤ × < 12).
ig. 8. Relative impact factors of the backward time-shifts in the ANN mode
ar represents the relative importance of the monthly SST value lag × mont
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Fig. 9. Results based on backpropagation ANNs. The curves display observed vs. predicted yearly landings (estimated R2 for forecasting cases). (A) Loliginids
in Thessaloniki (R2 = 0.99), (B) Ommastrephids in Thessaloniki (R2 = 0.87), (C) Loliginids in Kavala (R2 = 0.99) and (D) Ommastrephids in Kavala (R2 = 0.29).

vious 12 months. It is remarkable that 1 or 3 months before
the (mean) SST was relatively important for the loliginid but
not for the ommastrephid landings (Fig. 8).

3.2.4. Prediction of the annual total landings based on
monthly SST descriptors

The annual total landings of the target species were mod-
elled by developing new backpropagation ANNs and utilising
twelve regressors, namely the monthly SST means for each
given year (Fig. 9). Although loliginid models performed
very well, providing high R2 estimates between predicted
and observed values (Table 5), ommastrephid models were
less successful in the Thessaloniki area (R2 = 0.87) and did
not work in the remaining geographic areas.

The importance of each month for the model prediction
varied between species and areas. The Relative Contribu-
tion Factors (RCFs) showed in general higher standard errors
in the ommastrephid data, confusing their importance. On
the contrary, loliginid data showed clearly higher precision
and clear differences among the RCFs. For instance, the
relative importance of the months January, June–July and

September–October was always above the average 8% limit
for the loliginids of Thessaloniki.

3.3. Bayesian approach in forecasting

Loliginid and ommastrephid monthly landings of Thessa-
loniki and Kavala were used for developing Bayesian mod-
els incorporating among other components monthly SST
descriptors as environmental factors.

A steady state model was developed, based on a sim-
ple dynamic level according to the equations described in
methodology (forms 5 and 6). The starting conditions of the
models were based on the default values estimated by the
reference analysis. In all models, the incorporation of tem-
perature increased significantly their predictability.

The stepwise development is demonstrated, using as
example the case of the loliginid landings of Thessaloniki,
as follows. The observed versus the predicted values from
the steady state model provided, as expected, low coefficient
of determination (R2). By adding in the steady state model
an explanatory environmental variable (mean SST) the pre-

Table 5
Prediction of yearly landings using as regressors the SSTs of each month per year

Summary results Thessaloniki Kavala Alexandroupolis

C
R
r
M
M
M
M

S . both tr
Loliginids Ommastrephids

orrelation coefficient r 0.9990 0.9415
squared 0.9979 0.8738
squared 0.9981 0.8865
ean squared error 0 0.058
ean absolute error 0.005 0.203
in. absolute error 0 0.009
ax. absolute error 0.072 0.434

ummary results of the final ANNs taking into account the total data set i.e
Loliginids Ommastrephids Loliginids

0.9999 0.5848 0.9612
0.9997 0.2923 0.9131
0.9998 0.3420 0.924
0 696272 0.103
0.003 786 0.086
0 928 0
0.01 18393 1.244

aining and testing (forecasting) cases.
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Fig. 10. Predicted vs. observed monthly loliginid landings in Thessaloniki based on Bayesian Models. Left: univariate model, the average SST of the area under
study has been used as Regressor. Right: multivariate model, both average SST of the area under study and monthly seasonality have been used as Regressors.

dictability increased achieving a coefficient of determination
of R2 = 0.889 (Fig. 10). Further analysis of the residuals, esti-
mated applying the above dynamic regression model, still
showed the existence of seasonal patterns. The residual sea-
sonality (which was not included in the SST covariate) was
absorbed after adding 12 seasonal factors, which had a total
sum of 1 over a full year. The “full” model achieved a higher
R2 (0.996, Fig. 10). The residuals were randomly distributed
about the zero mean.

The final model was cross-validated with forecasting test
data, which had not been used in the analysis. Forecasted
values from our example of the loliginid landings in Thessa-
loniki is showed in Fig. 11, together with their 90% margin
limits. The estimated R2 between forecasted and observed
monthly data was equal to 0.96.

The estimated coefficients of determination of the step-
wise dynamic models are summarised in Table 6. Not all
steady state models provided predictions with R2 more
than 0.22. The incorporation of the temperature regressor
increased rapidly their performance to R2 varying from 0.80
to 0.89. The final models, which also incorporated the sea-
sonal periodicity, provided the highest R2 (0.99). The results
of the cross validation procedure showed very good perfor-
mance for the loliginid model (R2 = 0.96) and less precise
predictions for the others (R2 = 0.82–0.83). All cases were
inside the 90% margin limits.

Table 6
Prediction of monthly landings using Bayesian models developed in three
steps

Thessaloniki
loliginids

Thessaloniki
ommastrephids

Kavala
loliginids

1 Simple model 0.22 0.19 0.22
2 Adding mean

SST
0.89 0.80 0.84

3 Adding mean
SST and
seasonality

0.99 0.99 0.99

4 Cross-validation
data

0.96 0.83 0.82

Summary results of the estimated coefficients of determination R2 between
predicted and observed values, in each trial.

The incorporation of all four SST regressors improved
the R2 of the output of all final models, without changing
significantly their margin limits.

4. Discussion

4.1. The physical environmental

The northern part of the Aegean Sea represents the
most productive area for cephalopods in Greece and for

F during the analysis. Right: Forecast vs. observed cross-validation data. Estimated
c dence intervals).
ig. 11. Left: cross-validation of the Bayesian model based on data not used
oefficient of determination R2 = 0.96 (Dotted lines represent the 95% confi
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this reason has been the target of the present investigation.
Obviously modelling the fishery landings using environ-
mental parameters is an attractive approach towards a better
management of the biological resources. Environmental
predictors have been repeatedly used to uncover the role
of the environment in the distribution and abundance of
several cephalopod species (Cushing, 1981; Stergiou, 1987,
1989). Pierce et al. (1995) comparing fishery landings of
the Northeast Atlantic and Mediterranean loliginid landings,
over the period 1980–1992, suggested the possibility of a
large-scale climatic influence on the cephalopod abundance.

The marine environment in the studied area is affected
by two water influxes, a significant water flow from a large
system of rivers (Balopoulos, 1982) and a cold, less saline,
surface water originating from the Black Sea (Georgopoulos,
1984). The inflow is noticeable by simple scrutinising the
NOAA-SST or SeaWiFS satellite images. During the first
months of the year, the first water influx dominates especially
in the Thermaikos Gulf in Thessaloniki, while the second
influx affects mainly the areas near Kavala and Alexan-
droupolis. The extended use of several SST parameters in the
present analysis relies on the hypothesis that SST can provide
adequate information concerning the water masses and their
environmental status. Since, the target area is mainly enriched
in nutrients by the Black Sea surface inflow, a 5–25 m thin
surface layer coming out though the Straits of Dardanelles,
t
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sample cross-correlogram implemented by non-linear func-
tions. The performance of the new models was comparable
to those developed in the previous steps (Tables 2 and 3).
As is suggested from Fig. 8, the estimated relative impact
factor of the backward time-shifted mean SST varied signif-
icantly. Apart from the 11 and 12 months before, which may
be introduced due to the strong autocorrelation of the data,
other components (3, 1 and 5 months before) showed higher
relative impact factors. The cross-correlation-like graph may
be compared to that in Fig. 4 (below), which also suggested
correlations in periods shorter than 12 months. These results
may be difficult to be interpreted biologically, but they can
improve the predictability of models.

The existence of a strong seasonal pattern in the monthly
landings is easily seen in the original data (Fig. 2) or the
seasonal adjusted factors (SAFs) displayed in Fig. 3. Further
analysis of the seasonal patterns under various SST condi-
tions confirmed the initial hypothesis that the SST can explain
a lot of the landing seasonality, in the same way that SST
explained the variability in the time series of the landings. The
model outputs portrayed in Fig. 6 suggest that the monthly
landings are not equally sensitive to the SST changes all year
around. In certain months, a minor SST change coincides
with a significant gradient in the model output. Fig. 6 may be
better interpreted taking into account the data summarised in
Table 3. For instance, the mean SST observed during June
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he satellite information has been considered as adequate.

.2. The modelling approach

The hypothesis that sea temperature may play an important
ole in the evolution of the landings in the target area and that
ST parameters are adequate to describe the environmental

mpact on this mechanism was tested in the present work by
pplying stepwise model development.

From the results demonstrated mainly in Tables 2 and 6
t is evident that the incorporation of temperature descrip-
ors can significantly improve the model performance. The
stimated very low p-levels (p < 0.001) support the validity
f our hypothesis. The results in Table 2 gives the impres-
ion that certain descriptors are more effective than others;
owever such differences are not statistically significant and
urthermore their order varied among the different species
nd places. Replacing the SST descriptors with the shifted
nes did not significantly improve the fits, with the excep-
ion of the loliginid landings in Kavala, which achieved a
ignificant (p = 0.011) improvement in R2 after the backward
ime-shift. It should be recognised however, that due to the
trong autocorrelation of the SST data it may be hard to distin-
uish differences between the raw and the 12-month shifted
emperature descriptors.

The same problem was investigated applying ANN mod-
ls utilising as inputs “scrolled” the 12 previous months in
ach case. This structure tests not for the importance of cer-
ain months but for the effect of the temperature 1, 2, 3,
tc. months before a given month. It is the equivalent to a
nd July in Thessaloniki varied between 18 and 23 ◦C, a
ange, which in plot of Fig. 6A, can significantly affect the
mount of the loliginid landings. Similar “hot conditions”
uring September and October (mean SST varied between
0 and 23 ◦C), can explain order of magnitudes more than
our in logarithmic scale. The sensitivity shape portrayed in
he 3D-graphs varies among the different species and areas.
he graph representing the ommastrephid landings in Kavala
ay be interpreted with caution due to the very low R2 pro-

ided from this model (0.38). In Kavala the loliginid landings
howed their sensitive period during July and August, where
he expected mean SST varied between 20 and 24 ◦C.

The modelling of the annual landings is practically more
ttractive and seems to be easily interpretable. However, it
s obvious that the prediction of annual landings is only a
umulative monthly prediction and in any case should be
he final approach. The results of the ANNs developed for
nvestigating this approach are displayed in Fig. 9 and are
ummarised in Table 5. The estimated R2 of the models con-
erning the loliginid landings varied between 0.91 and 0.99,
nd was significantly better than the corresponding estimate
f ommastrephid, which achieved R2 > 0.87 in Thessaloniki
nd failed in Kavala (R2 < 0.30).

The impact of the monthly SST on the annual predic-
ion varied between species and areas. For instance, the
elative importance of the months January, June–July and
eptember–October is always above the average 8% limit
or the loliginids of Thessaloniki.

The importance of the observed SST in certain months
ay be compared to the seasonal patterns portrayed in Fig. 6.
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Despite the fact that they represent different models, namely
annual and monthly landings, they showed similarities.
The importance of the SST for the loliginid landings
during June–July, September–October and July–August
in Thessaloniki and Kavala, respectively seems to be in
accordance with the modelled sensitivity proposed in the
graphs of Fig. 6. Such results may suggest further research
on certain time periods of the life history of the target
species and elucidate the relations among the biological and
environmental parameters.

4.3. Comparison of the final models

It is well known that most statistical models are restricted
on a static character. They assume that the quantified rela-
tionships and system parameters remain the same across
the observation and forecasting time period. Therefore, the
ability to apply and test more flexible and sophisticated algo-
rithms in order to achieve better forecasting performance
seems to be very promising.

ARIMA models show a relative good performance in case
of time series with a strong autoregressive character. How-
ever, their generalisation capability, namely the ability to
predict well if a strong deviation from the previous pattern
occurs, is limited. The univariate ARIMA models provided a
relatively high R2, which could not be improved significantly
b
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monthly seasonality were the main model components. In the
Bayesian models, the parameters, which would be assumed
constant in the classical frequentist approach, are allowed to
vary slowly over time if there is evidence in the data for such
changes. The estimated coefficients of determination were
the highest of all other models (0.99), even by utilising only
the mean SST descriptor.

The models provided also high performance on the cross-
validation test. The advantage of the Bayesian approach over
the structural time series approach is that the applied meth-
ods are exact even in the non-linear case and can provide
detailed impact factors of each variable in a given moment.
The Bayesian model may provide an appropriate tool, com-
bined with the study of the life history of the two target
species, for the investigation of possible relationships among
the estimated fluctuations of the monthly components and the
concurrent environmental changes in the target areas.
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y adding any other regressor in the multivariate version. This
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how any environmental impact on landings. As a prediction
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onthly ANN models were lower compared to the ARIMA.
owever, it should be emphasised that the ANNs included

xclusively SST variables and no direct seasonal patterns.
t is remarkable, that the SST descriptors alone can predict
he landings at such high levels of R2 (0.89). The prediction
f the annual landings was possible only by applying neural
odels, other methods being limited by the limited data set.
gain, the annual models did not contain seasonal patterns

nd the prediction was based exclusively on the temperatures
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ities for the financial support of the work, under the research
rojects: CEPHVAR, FAIR-PL-1520/1999–2001 and CEPH-
TOCK, QoL-2001/2002–2004; and the German Aerospace
gency for the distribution of AVHRR data through the freely

vailable GISIS (http://isis.dlr.de/).
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1839 (Cephalopoda: Ommastrephidae) Populations from the European
Atlantic and Mediterranean Waters. Bull. Mar. Sci. 71, 129–146.

alopoulos, E.T., 1982. Circulation and Mixing in the Water Masses of
the N.W. Aegean Sea. Ph.D. Thesis, University of Wales, UK.

ox, G.E.P., Jenkins, G.M., 1976. Time Series Analysis: Forecasting and
Control. Holden-Day, San Francisco.

ox, G.E.P., Tiao, G.C., 1973. Bayesian Inference in Statistical Analysis.
Addison-Wesley, Massachusetts.

addy, J.F., 1989. Marine Invertebrate Fisheries: Their Assessment and
Management. John Wiley and Sons, New York.

ohen, Y., Stone, J.N., 1987. Multivariate time series analysis of the
Canadian fisheries system in Lake Superior. Can. J. Fish. Aquat. Sci.
44 (Suppl. 2), 171–181.

ushing, D.H., 1981. Temporal variability in production systems. In:
Longhurst, A.R. (Ed.), Analysis of Marine Ecosystems. Academic
Press, New York, 741 pp.

’onghia, G., Matarese, A., Tursi, A., Maiorano, P., 1996. Cephalopods
collected by bottom trawling in the North Aegean Sea (Eastern
Mediterranean). Oebalia 22, 33–46.

ox, W.W., 1970. An exponential surplus-yield model for optimising
exploited fish populations. Trans. Am. Fish. Soc. 99, 80–88.

http://isis.dlr.de/


S. Georgakarakos et al. / Fisheries Research 78 (2006) 55–71 71

Georgakarakos, S., Haralabous, J., Valavanis, V., Arvanitidis, C., Kout-
soubas, D., 2002. Prediction of fishery exploitation stocks of loliginid
and ommastrephid squids in Greek waters (Eastern Mediterranean)
using uni- and multivariate time series analysis techniques. Bull. Mar.
Sci. 71 (1), 269–288.

Georgopoulos, D., 1984. Sea surface temperature distribution in the
Aegean Sea using IR Satellite Imagery. In: Proceedings of the First
Panhellenic Symposium in the Oceanography and Fisheries, Athens,
pp. 105–112 (in Greek).

Haddon, M., 2001. Modelling and Quantitative Methods in Fisheries.
Chapman and Hall/CRC.

Hilborn, R., Walters, C.J., 1992. Quantitative Fisheries Stock Assessment.
Chapman and Hall, New York, London.

Koutsoubas, D., Arvanitidis, C., Valavanis, V.D., Georgakarakos, S.,
Kapantagakis, A., Magoulas, A., Kotoulas, G., 1999. Cephalopod
Resources in the Eastern Mediterranean with particular emphasis in
Greek Seas: Present and Future Perspectives. ICES CM 1999/G:4.

Makridakis, S.G., 1990. Forecasting Planning and Strategy for the 21st
Century. Free Press, London.

McDowall, D., McCleary, R., Meidinger, E.E., Hay, R.A., 1980. Inter-
rupted Time Series Analysis. Sage Publications, Beverly Hills, CA.

Moreno, A., Pereira, J., Arvanitidis, C., Robin, J.P., Koutsoubas, D.,
Pelales-Raya, C., Da Cunha, M.M., Balguerias, E., Denis, V., 2002.
Biological Variation of Loligo vulgaris (Cephalopoda: Loliginidae)
in the Eastern Atlantic and Mediterranean. Bull. Mar. Sci. 71, 515–
534.

Pierce, G.J., Collins, M.A., Cunha, M.M., Guerra, A., Piatkowski, U.,
Porteiro, F., Robin, J.P., 1995. Correlation analysis of interannual
variation in Cephalopod landings from European waters. ICES CM
1995/K:22.

Pole, A., West, M., 1990. Efficient Bayesian Learning in non-linear
dynamic models. J. Forecast. 9, 119–136.

Ripley, B.D., 1996. Pattern Recognition and Neural Networks. Cambridge
University Press.

Roper, C.F.E., Sweeney, M.J., Nauen, C.E., 1984. FAO Species Catalogue.
Cephalopods of the World. An annotated and illustrated catalogue of
species of interests to fisheries. FAO Fish. Synop. 3 (125).

Schaefer, M.B., 1984. Some aspects of the dynamics of populations
important to the management of commercial marine fisheries. Bull.
Inter-Am. Trop. Tuna Comm. 1, 27–56.

SPSS Inc., 2002. SPSS Base 11.5. User’s guide, 613 pp.
Stergiou, K.I., 1987. Cephalopod abundance in Greek waters in relation

to environmental fluctuations. Biol. Gallo-Hell. 13, 25–34.
Stergiou, K.I., 1989. Assessment of the state and management of the

cephalopod trawl fisheries in Greek waters. Toxicol. Environ. Chem.
20/21, 233–239.

Stergiou, K.I., Christou, E.D., 1996. Modelling and forecasting annual
fisheries catches: comparison of regression, univariate and multivariate
time series methods. Fish. Res. 25, 105–138.

Twomey, J.M., Smith, A.E., 1996. Artificial neural networks for civil
engineers. In: Kartam, N., Flood, I., Garrett, J. (Eds.), Fundamentals
and Applications. ASCE Press.

Valavanis, V.D., Georgakarakos, S., Koutsoubas, D., Arvanitidis, C., Har-
alabous, J., 2002. Development of a Marine Information System for
Cephalopod Fisheries in the Greek Seas (Eastern Mediterranean). Bull.
Mar. Sci. 71 (2), 867–882.

West, M., Harrison, P.J., 1989. Bayesian Forecasting and Dynamic Mod-
els. Springer-Verlag, New York.

Zar, J.H., 1999. Biostatistical Analysis. Prentice Hall International, Inc.,
New Jersey, USA.


	Time series analysis and forecasting techniques applied on loliginid and ommastrephid landings in Greek waters
	Introduction
	Materials and methods
	Study area, source of data and pre-processing
	Seasonal decomposition procedure
	Development of models
	ARIMA models
	Neural network development
	Bayesian dynamic system analysis
	Step by step DM development


	Results
	Analysis based on classical time series models
	Seasonal decomposition
	ARIMA models

	Time series analysis via artificial neural networks
	Stepwise modelling the monthly landings by applying environmental predictors
	The monthly pattern for different SST conditions
	Prediction of the monthly landings
	Prediction of the annual total landings based on monthly SST descriptors

	Bayesian approach in forecasting

	Discussion
	The physical environmental
	The modelling approach
	Comparison of the final models

	Acknowledgements
	References


